denoising / app.py
BorisovMaksim's picture
Update app.py
ddfe3a3
raw
history blame
2.32 kB
import uuid
import ffmpeg
import gradio as gr
from pathlib import Path
from denoisers.SpectralGating import SpectralGating
from huggingface_hub import hf_hub_download
from denoisers.demucs import Demucs
import torch
import torchaudio
import yaml
def denoising_transform(audio, model):
src_path = Path("cache_wav/original/{}.wav".format(str(uuid.uuid4())))
tgt_path = Path("cache_wav/denoised/{}.wav".format(str(uuid.uuid4())))
src_path.parent.mkdir(exist_ok=True, parents=True)
tgt_path.parent.mkdir(exist_ok=True, parents=True)
(ffmpeg.input(audio)
.output(src_path.as_posix(), acodec='pcm_s16le', ac=1, ar=22050)
.run()
)
wav, rate = torchaudio.load(audio)
reduced_noise = model.predict(wav)
torchaudio.save(tgt_path, reduced_noise, rate)
return tgt_path
def run_app(model_filename, config_filename):
model_path = hf_hub_download(repo_id="BorisovMaksim/demucs", filename=model_filename)
config_path = hf_hub_download(repo_id="BorisovMaksim/demucs", filename=config_filename)
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
model = Demucs(config['demucs'])
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
interface_demucs = gr.Interface(
fn=lambda x: denoising_transform(x, model),
inputs=gr.Audio(label="Source Audio", source="microphone", type='filepath'),
outputs=gr.Audio(label="Demucs", type='filepath'),
allow_flagging='never'
)
interface_spectral_gating = gr.Interface(
fn=lambda x: denoising_transform(x, SpectralGating()),
inputs=gr.Audio(label="Source Audio", source="microphone", type='filepath'),
outputs=gr.Audio(label="Spectral Gating", type='filepath'),
allow_flagging='never'
)
gr.Parallel(interface_demucs, interface_spectral_gating,
title="Denoising",
examples=[
["testing/wavs/p232_071.wav"],
["testing/wavs/p232_284.wav"],
]).launch()
if __name__ == "__main__":
model_filename = "paper_replica_10_epoch/Demucs_replicate_paper_epoch9.pt"
config_filename = "paper_replica_10_epoch/config.yaml"
run_app(model_filename, config_filename)