Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +94 -0
- clip_chat.py +82 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import clip_chat
|
3 |
+
|
4 |
+
|
5 |
+
def logit2sentence(logit, slider_value):
|
6 |
+
sentence = ""
|
7 |
+
if logit < slider_value / 2.5:
|
8 |
+
sentence = "Nope. Not at all."
|
9 |
+
elif slider_value / 2.5 < logit < slider_value / 1.56:
|
10 |
+
sentence = "Not really..."
|
11 |
+
elif slider_value / 1.56 < logit < slider_value / 1.36:
|
12 |
+
sentence = "Close but not there."
|
13 |
+
elif slider_value / 1.36 < logit < slider_value / 1.14:
|
14 |
+
sentence = "That's quite close."
|
15 |
+
elif slider_value / 1.14 < logit < slider_value:
|
16 |
+
sentence = "Almost guessed."
|
17 |
+
elif logit >= slider_value:
|
18 |
+
sentence = "YES!!"
|
19 |
+
return sentence
|
20 |
+
|
21 |
+
|
22 |
+
def give_up():
|
23 |
+
image = clip_chat.image_org
|
24 |
+
return image, None, "You lost... (Press \"Reset\" to play again)"
|
25 |
+
|
26 |
+
|
27 |
+
def update_difficulty(x):
|
28 |
+
if not has_started:
|
29 |
+
clip_chat.goal = x
|
30 |
+
return clip_chat.goal
|
31 |
+
return clip_chat.goal
|
32 |
+
|
33 |
+
|
34 |
+
has_started = False
|
35 |
+
best_guess = None
|
36 |
+
|
37 |
+
|
38 |
+
def respond(message, chat_history, label_value, image_value):
|
39 |
+
global has_started, best_guess
|
40 |
+
|
41 |
+
if not has_started:
|
42 |
+
has_started = True
|
43 |
+
|
44 |
+
logits, is_better = clip_chat.answer(message)
|
45 |
+
bot_message = logit2sentence(logits, clip_chat.goal)
|
46 |
+
|
47 |
+
if is_better == 3:
|
48 |
+
best_guess = {f"Best Guess: \"{message}\"": float(logits) / clip_chat.goal}
|
49 |
+
if float(logits) >= clip_chat.goal:
|
50 |
+
bot_message = "YES!"
|
51 |
+
best_guess = "YOU WIN! (Press \"Reset\" to play again)"
|
52 |
+
image_value = clip_chat.image_org
|
53 |
+
else:
|
54 |
+
if is_better == -1:
|
55 |
+
bot_message += ""
|
56 |
+
elif is_better == 0:
|
57 |
+
bot_message += "You did worse than the last one."
|
58 |
+
elif is_better == 1 or is_better == 3:
|
59 |
+
bot_message += "You did better than the last one."
|
60 |
+
|
61 |
+
label_value = best_guess
|
62 |
+
|
63 |
+
chat_history.append((message, bot_message))
|
64 |
+
return "", chat_history, label_value, image_value
|
65 |
+
|
66 |
+
|
67 |
+
def reset_everything():
|
68 |
+
global has_started, best_guess
|
69 |
+
clip_chat.reset_everything()
|
70 |
+
has_started = False
|
71 |
+
best_guess = None
|
72 |
+
return clip_chat.goal, None, "This is a \"Guess the Image\" game. I'm thinking of a picture and you have to guess using the chat above.", None
|
73 |
+
|
74 |
+
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
chatbot = gr.Chatbot()
|
79 |
+
msg = gr.Textbox()
|
80 |
+
slider = gr.inputs.Slider(minimum=18, maximum=27, default=21, label="Difficulty (18 - Easy, 27 - Expert)")
|
81 |
+
with gr.Column():
|
82 |
+
label = gr.Label("This is a \"Guess the Image\" game. I'm thinking of a picture and you have to guess using the chat above.")
|
83 |
+
image_output = gr.outputs.Image(type="pil")
|
84 |
+
show_image_button = gr.Button("Give Up...")
|
85 |
+
reset_button = gr.Button("Reset")
|
86 |
+
|
87 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot, label, image_output])
|
88 |
+
slider.release(update_difficulty, inputs=[slider], outputs=[slider])
|
89 |
+
show_image_button.click(give_up, outputs=[image_output, chatbot, label], queue=False)
|
90 |
+
reset_button.click(reset_everything, outputs=[slider, image_output, label, chatbot], queue=False)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.title = "CLIP Guess the Image"
|
94 |
+
demo.launch(share=False)
|
clip_chat.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import clip
|
3 |
+
from PIL import Image
|
4 |
+
import glob
|
5 |
+
import os
|
6 |
+
from random import choice
|
7 |
+
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model, preprocess = clip.load("ViT-L/14@336px", device=device)
|
11 |
+
|
12 |
+
COCO = glob.glob(os.path.join(os.getcwd(), "images", "*"))
|
13 |
+
available_models = ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
|
14 |
+
|
15 |
+
|
16 |
+
def load_random_image():
|
17 |
+
image_path = choice(COCO)
|
18 |
+
image = Image.open(image_path)
|
19 |
+
return image
|
20 |
+
|
21 |
+
|
22 |
+
def next_image():
|
23 |
+
global image_org, image
|
24 |
+
image_org = load_random_image()
|
25 |
+
image = preprocess(Image.fromarray(image_org)).unsqueeze(0).to(device)
|
26 |
+
|
27 |
+
|
28 |
+
def calculate_logits(image_features, text_features):
|
29 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
30 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
31 |
+
|
32 |
+
logit_scale = model.logit_scale.exp()
|
33 |
+
return logit_scale * image_features @ text_features.t()
|
34 |
+
|
35 |
+
|
36 |
+
last = -1
|
37 |
+
best = -1
|
38 |
+
|
39 |
+
goal = 21
|
40 |
+
|
41 |
+
image_org = load_random_image()
|
42 |
+
image = preprocess(image_org).unsqueeze(0).to(device)
|
43 |
+
with torch.no_grad():
|
44 |
+
image_features = model.encode_image(image)
|
45 |
+
|
46 |
+
|
47 |
+
def answer(message):
|
48 |
+
global last, best
|
49 |
+
|
50 |
+
text = clip.tokenize([message]).to(device)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
text_features = model.encode_text(text)
|
54 |
+
logits_per_image, _ = model(image, text)
|
55 |
+
logits = calculate_logits(image_features, text_features).cpu().numpy().flatten()[0]
|
56 |
+
|
57 |
+
if last == -1:
|
58 |
+
is_better = -1
|
59 |
+
elif last > logits:
|
60 |
+
is_better = 0
|
61 |
+
elif last < logits:
|
62 |
+
is_better = 1
|
63 |
+
elif logits > goal:
|
64 |
+
is_better = 2
|
65 |
+
else:
|
66 |
+
is_better = -1
|
67 |
+
|
68 |
+
last = logits
|
69 |
+
if logits > best:
|
70 |
+
best = logits
|
71 |
+
is_better = 3
|
72 |
+
|
73 |
+
return logits, is_better
|
74 |
+
|
75 |
+
|
76 |
+
def reset_everything():
|
77 |
+
global last, best, goal, image, image_org
|
78 |
+
last = -1
|
79 |
+
best = -1
|
80 |
+
goal = 21
|
81 |
+
image_org = load_random_image()
|
82 |
+
image = preprocess(image_org).unsqueeze(0).to(device)
|