simulatorAldi / pages /8_Scenario_Planner.py
Pragya Jatav
update
1e6110a
import streamlit as st
from numerize.numerize import numerize
import numpy as np
from functools import partial
from collections import OrderedDict
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from utilities import (
format_numbers,
load_local_css,
set_header,
initialize_data,
load_authenticator,
send_email,
channel_name_formating,
)
from classes import class_from_dict, class_to_dict
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import re
import pandas as pd
import plotly.express as px
st.set_page_config(layout="wide")
load_local_css("styles.css")
set_header()
for k, v in st.session_state.items():
if k not in ["logout", "login", "config"] and not k.startswith("FormSubmitter"):
st.session_state[k] = v
# ======================================================== #
# ======================= Functions ====================== #
# ======================================================== #
def optimize(key, status_placeholder):
"""
Optimize the spends for the sales
"""
channel_list = [
key for key, value in st.session_state["optimization_channels"].items() if value
]
if len(channel_list) > 0:
scenario = st.session_state["scenario"]
if key.lower() == "media spends":
with status_placeholder:
with st.spinner("Optimizing"):
result = st.session_state["scenario"].optimize(
st.session_state["total_spends_change"], channel_list
)
# elif key.lower() == "revenue":
else:
with status_placeholder:
with st.spinner("Optimizing"):
result = st.session_state["scenario"].optimize_spends(
st.session_state["total_sales_change"], channel_list
)
for channel_name, modified_spends in result:
st.session_state[channel_name] = numerize(
modified_spends * scenario.channels[channel_name].conversion_rate,
1,
)
prev_spends = (
st.session_state["scenario"].channels[channel_name].actual_total_spends
)
st.session_state[f"{channel_name}_change"] = round(
100 * (modified_spends - prev_spends) / prev_spends, 2
)
def save_scenario(scenario_name):
"""
Save the current scenario with the mentioned name in the session state
Parameters
----------
scenario_name
Name of the scenario to be saved
"""
if "saved_scenarios" not in st.session_state:
st.session_state = OrderedDict()
# st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
st.session_state["saved_scenarios"][scenario_name] = class_to_dict(
st.session_state["scenario"]
)
st.session_state["scenario_input"] = ""
# print(type(st.session_state['saved_scenarios']))
with open("../saved_scenarios.pkl", "wb") as f:
pickle.dump(st.session_state["saved_scenarios"], f)
if "allow_spends_update" not in st.session_state:
st.session_state["allow_spends_update"] = True
if "allow_sales_update" not in st.session_state:
st.session_state["allow_sales_update"] = True
def update_sales_abs_slider():
actual_sales = _scenario.actual_total_sales
if validate_input(st.session_state["total_sales_change_abs_slider"]):
modified_sales = extract_number_for_string(
st.session_state["total_sales_change_abs_slider"]
)
st.session_state["total_sales_change"] = round(
((modified_sales / actual_sales) - 1) * 100
)
st.session_state["total_sales_change_abs"] = numerize(modified_sales, 1)
def update_sales_abs():
if (
st.session_state["total_sales_change_abs"]
in st.session_state["total_sales_change_abs_slider_options"]
):
st.session_state["allow_sales_update"] = True
else:
st.session_state["allow_sales_update"] = False
actual_sales = _scenario.actual_total_sales
if (
validate_input(st.session_state["total_sales_change_abs"])
and st.session_state["allow_sales_update"]
):
modified_sales = extract_number_for_string(
st.session_state["total_sales_change_abs"]
)
st.session_state["total_sales_change"] = round(
((modified_sales / actual_sales) - 1) * 100
)
st.session_state["total_sales_change_abs_slider"] = numerize(modified_sales, 1)
def update_sales():
st.session_state["total_sales_change_abs"] = numerize(
(1 + st.session_state["total_sales_change"] / 100)
* _scenario.actual_total_sales,
1,
)
st.session_state["total_sales_change_abs_slider"] = numerize(
(1 + st.session_state["total_sales_change"] / 100)
* _scenario.actual_total_sales,
1,
)
def update_all_spends_abs_slider():
actual_spends = _scenario.actual_total_spends
if validate_input(st.session_state["total_spends_change_abs_slider"]):
modified_spends = extract_number_for_string(
st.session_state["total_spends_change_abs_slider"]
)
st.session_state["total_spends_change"] = round(
((modified_spends / actual_spends) - 1) * 100
)
st.session_state["total_spends_change_abs"] = numerize(modified_spends, 1)
update_all_spends()
# def update_all_spends_abs_slider():
# actual_spends = _scenario.actual_total_spends
# if validate_input(st.session_state["total_spends_change_abs_slider"]):
# print("#" * 100)
# print(st.session_state["total_spends_change_abs_slider"])
# print("#" * 100)
# modified_spends = extract_number_for_string(
# st.session_state["total_spends_change_abs_slider"]
# )
# st.session_state["total_spends_change"] = (
# (modified_spends / actual_spends) - 1
# ) * 100
# st.session_state["total_spends_change_abs"] = st.session_state[
# "total_spends_change_abs_slider"
# ]
# update_all_spends()
def update_all_spends_abs():
if (
st.session_state["total_spends_change_abs"]
in st.session_state["total_spends_change_abs_slider_options"]
):
st.session_state["allow_spends_update"] = True
else:
st.session_state["allow_spends_update"] = False
actual_spends = _scenario.actual_total_spends
if (
validate_input(st.session_state["total_spends_change_abs"])
and st.session_state["allow_spends_update"]
):
modified_spends = extract_number_for_string(
st.session_state["total_spends_change_abs"]
)
st.session_state["total_spends_change"] = (
(modified_spends / actual_spends) - 1
) * 100
st.session_state["total_spends_change_abs_slider"] = st.session_state[
"total_spends_change_abs"
]
update_all_spends()
def update_spends():
st.session_state["total_spends_change_abs"] = numerize(
(1 + st.session_state["total_spends_change"] / 100)
* _scenario.actual_total_spends,
1,
)
st.session_state["total_spends_change_abs_slider"] = numerize(
(1 + st.session_state["total_spends_change"] / 100)
* _scenario.actual_total_spends,
1,
)
update_all_spends()
def update_all_spends():
"""
Updates spends for all the channels with the given overall spends change
"""
percent_change = st.session_state["total_spends_change"]
for channel_name in st.session_state["channels_list"]:
channel = st.session_state["scenario"].channels[channel_name]
current_spends = channel.actual_total_spends
modified_spends = (1 + percent_change / 100) * current_spends
st.session_state["scenario"].update(channel_name, modified_spends)
st.session_state[channel_name] = numerize(
modified_spends * channel.conversion_rate, 1
)
st.session_state[f"{channel_name}_change"] = percent_change
def extract_number_for_string(string_input):
string_input = string_input.upper()
if string_input.endswith("K"):
return float(string_input[:-1]) * 10**3
elif string_input.endswith("M"):
return float(string_input[:-1]) * 10**6
elif string_input.endswith("B"):
return float(string_input[:-1]) * 10**9
def validate_input(string_input):
pattern = r"\d+\.?\d*[K|M|B]$"
match = re.match(pattern, string_input)
if match is None:
return False
return True
def update_data_by_percent(channel_name):
prev_spends = (
st.session_state["scenario"].channels[channel_name].actual_total_spends
* st.session_state["scenario"].channels[channel_name].conversion_rate
)
modified_spends = prev_spends * (
1 + st.session_state[f"{channel_name}_change"] / 100
)
st.session_state[channel_name] = numerize(modified_spends, 1)
st.session_state["scenario"].update(
channel_name,
modified_spends
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
)
def update_data(channel_name):
"""
Updates the spends for the given channel
"""
if validate_input(st.session_state[channel_name]):
modified_spends = extract_number_for_string(st.session_state[channel_name])
prev_spends = (
st.session_state["scenario"].channels[channel_name].actual_total_spends
* st.session_state["scenario"].channels[channel_name].conversion_rate
)
st.session_state[f"{channel_name}_change"] = round(
100 * (modified_spends - prev_spends) / prev_spends, 2
)
st.session_state["scenario"].update(
channel_name,
modified_spends
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
)
# st.session_state['scenario'].update(channel_name, modified_spends)
# else:
# try:
# modified_spends = float(st.session_state[channel_name])
# prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
# st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
# st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
# st.session_state[f'{channel_name}'] = numerize(modified_spends,1)
# except ValueError:
# st.write('Invalid input')
def select_channel_for_optimization(channel_name):
"""
Marks the given channel for optimization
"""
st.session_state["optimization_channels"][channel_name] = st.session_state[
f"{channel_name}_selected"
]
def select_all_channels_for_optimization():
"""
Marks all the channel for optimization
"""
for channel_name in st.session_state["optimization_channels"].keys():
st.session_state[f"{channel_name}_selected"] = st.session_state[
"optimze_all_channels"
]
st.session_state["optimization_channels"][channel_name] = st.session_state[
"optimze_all_channels"
]
def update_penalty():
"""
Updates the penalty flag for sales calculation
"""
st.session_state["scenario"].update_penalty(st.session_state["apply_penalty"])
def reset_scenario(panel_selected, file_selected, updated_rcs):
# #print(st.session_state['default_scenario_dict'])
# st.session_state['scenario'] = class_from_dict(st.session_state['default_scenario_dict'])
# for channel in st.session_state['scenario'].channels.values():
# st.session_state[channel.name] = float(channel.actual_total_spends * channel.conversion_rate)
# initialize_data()
if panel_selected == "Total Market":
initialize_data(
panel=panel_selected,
target_file=file_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
panel = None
else:
initialize_data(
panel=panel_selected,
target_file=file_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
for channel_name in st.session_state["channels_list"]:
st.session_state[f"{channel_name}_selected"] = False
st.session_state[f"{channel_name}_change"] = 0
st.session_state["optimze_all_channels"] = False
st.session_state["total_sales_change"] = 0
update_spends()
update_sales()
reset_inputs()
# st.rerun()
def format_number(num):
if num >= 1_000_000:
return f"{num / 1_000_000:.2f}M"
elif num >= 1_000:
return f"{num / 1_000:.0f}K"
else:
return f"{num:.2f}"
def summary_plot(data, x, y, title, text_column):
fig = px.bar(
data,
x=x,
y=y,
orientation="h",
title=title,
text=text_column,
color="Channel_name",
)
# Convert text_column to numeric values
data[text_column] = pd.to_numeric(data[text_column], errors="coerce")
# Update the format of the displayed text based on magnitude
fig.update_traces(
texttemplate="%{text:.2s}",
textposition="outside",
hovertemplate="%{x:.2s}",
)
fig.update_layout(xaxis_title=x, yaxis_title="Channel Name", showlegend=False)
return fig
def s_curve(x, K, b, a, x0):
return K / (1 + b * np.exp(-a * (x - x0)))
def find_segment_value(x, roi, mroi):
start_value = x[0]
end_value = x[len(x) - 1]
# Condition for green region: Both MROI and ROI > 1
green_condition = (roi > 1) & (mroi > 1)
left_indices = np.where(green_condition)[0]
left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
right_indices = np.where(green_condition)[0]
right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
return start_value, end_value, left_value, right_value
def calculate_rgba(
start_value, end_value, left_value, right_value, current_channel_spends
):
# Initialize alpha to None for clarity
alpha = None
# Determine the color and calculate relative_position and alpha based on the point's position
if start_value <= current_channel_spends <= left_value:
color = "yellow"
relative_position = (current_channel_spends - start_value) / (
left_value - start_value
)
alpha = 0.8 - (0.6 * relative_position) # Alpha decreases from start to end
elif left_value < current_channel_spends <= right_value:
color = "green"
relative_position = (current_channel_spends - left_value) / (
right_value - left_value
)
alpha = 0.8 - (0.6 * relative_position) # Alpha decreases from start to end
elif right_value < current_channel_spends <= end_value:
color = "red"
relative_position = (current_channel_spends - right_value) / (
end_value - right_value
)
alpha = 0.2 + (0.6 * relative_position) # Alpha increases from start to end
else:
# Default case, if the spends are outside the defined ranges
return "rgba(136, 136, 136, 0.5)" # Grey for values outside the range
# Ensure alpha is within the intended range in case of any calculation overshoot
alpha = max(0.2, min(alpha, 0.8))
# Define color codes for RGBA
color_codes = {
"yellow": "255, 255, 0", # RGB for yellow
"green": "0, 128, 0", # RGB for green
"red": "255, 0, 0", # RGB for red
}
rgba = f"rgba({color_codes[color]}, {alpha})"
return rgba
def debug_temp(x_test, power, K, b, a, x0):
print("*" * 100)
# Calculate the count of bins
count_lower_bin = sum(1 for x in x_test if x <= 2524)
count_center_bin = sum(1 for x in x_test if x > 2524 and x <= 3377)
count_ = sum(1 for x in x_test if x > 3377)
print(
f"""
lower : {count_lower_bin}
center : {count_center_bin}
upper : {count_}
"""
)
# @st.cache
def plot_response_curves():
cols = 4
rows = (
len(channels_list) // cols
if len(channels_list) % cols == 0
else len(channels_list) // cols + 1
)
rcs = st.session_state["rcs"]
shapes = []
fig = make_subplots(rows=rows, cols=cols, subplot_titles=channels_list)
for i in range(0, len(channels_list)):
col = channels_list[i]
x_actual = st.session_state["scenario"].channels[col].actual_spends
# x_modified = st.session_state["scenario"].channels[col].modified_spends
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
K = rcs[col]["K"]
b = rcs[col]["b"]
a = rcs[col]["a"]
x0 = rcs[col]["x0"]
x_plot = np.linspace(0, 5 * x_actual.sum(), 50)
x, y, marginal_roi = [], [], []
for x_p in x_plot:
x.append(x_p * x_actual / x_actual.sum())
for index in range(len(x_plot)):
y.append(s_curve(x[index] / 10**power, K, b, a, x0))
for index in range(len(x_plot)):
marginal_roi.append(
a * y[index] * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
)
x = (
np.sum(x, axis=1)
* st.session_state["scenario"].channels[col].conversion_rate
)
y = np.sum(y, axis=1)
marginal_roi = (
np.average(marginal_roi, axis=1)
/ st.session_state["scenario"].channels[col].conversion_rate
)
roi = y / np.maximum(x, np.finfo(float).eps)
fig.add_trace(
go.Scatter(
x=x,
y=y,
name=col,
customdata=np.stack((roi, marginal_roi), axis=-1),
hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
line=dict(color="blue"),
),
row=1 + (i) // cols,
col=i % cols + 1,
)
x_optimal = (
st.session_state["scenario"].channels[col].modified_total_spends
* st.session_state["scenario"].channels[col].conversion_rate
)
y_optimal = st.session_state["scenario"].channels[col].modified_total_sales
# if col == "Paid_social_others":
# debug_temp(x_optimal * x_actual / x_actual.sum(), power, K, b, a, x0)
fig.add_trace(
go.Scatter(
x=[x_optimal],
y=[y_optimal],
name=col,
legendgroup=col,
showlegend=False,
marker=dict(color=["black"]),
),
row=1 + (i) // cols,
col=i % cols + 1,
)
shapes.append(
go.layout.Shape(
type="line",
x0=0,
y0=y_optimal,
x1=x_optimal,
y1=y_optimal,
line_width=1,
line_dash="dash",
line_color="black",
xref=f"x{i+1}",
yref=f"y{i+1}",
)
)
shapes.append(
go.layout.Shape(
type="line",
x0=x_optimal,
y0=0,
x1=x_optimal,
y1=y_optimal,
line_width=1,
line_dash="dash",
line_color="black",
xref=f"x{i+1}",
yref=f"y{i+1}",
)
)
start_value, end_value, left_value, right_value = find_segment_value(
x,
roi,
marginal_roi,
)
# Adding background colors
y_max = y.max() * 1.3 # 30% extra space above the max
# Yellow region
shapes.append(
go.layout.Shape(
type="rect",
x0=start_value,
y0=0,
x1=left_value,
y1=y_max,
line=dict(width=0),
fillcolor="rgba(255, 255, 0, 0.3)",
layer="below",
xref=f"x{i+1}",
yref=f"y{i+1}",
)
)
# Green region
shapes.append(
go.layout.Shape(
type="rect",
x0=left_value,
y0=0,
x1=right_value,
y1=y_max,
line=dict(width=0),
fillcolor="rgba(0, 255, 0, 0.3)",
layer="below",
xref=f"x{i+1}",
yref=f"y{i+1}",
)
)
# Red region
shapes.append(
go.layout.Shape(
type="rect",
x0=right_value,
y0=0,
x1=end_value,
y1=y_max,
line=dict(width=0),
fillcolor="rgba(255, 0, 0, 0.3)",
layer="below",
xref=f"x{i+1}",
yref=f"y{i+1}",
)
)
fig.update_layout(
# height=1000,
# width=1000,
title_text=f"Response Curves (X: Spends Vs Y: {target})",
showlegend=False,
shapes=shapes,
)
fig.update_annotations(font_size=10)
# fig.update_xaxes(title="Spends")
# fig.update_yaxes(title=target)
fig.update_yaxes(
gridcolor="rgba(136, 136, 136, 0.5)", gridwidth=0.5, griddash="dash"
)
return fig
# @st.cache
# def plot_response_curves():
# cols = 4
# rcs = st.session_state["rcs"]
# shapes = []
# fig = make_subplots(rows=6, cols=cols, subplot_titles=channels_list)
# for i in range(0, len(channels_list)):
# col = channels_list[i]
# x = st.session_state["actual_df"][col].values
# spends = x.sum()
# power = np.ceil(np.log(x.max()) / np.log(10)) - 3
# x = np.linspace(0, 3 * x.max(), 200)
# K = rcs[col]["K"]
# b = rcs[col]["b"]
# a = rcs[col]["a"]
# x0 = rcs[col]["x0"]
# y = s_curve(x / 10**power, K, b, a, x0)
# roi = y / x
# marginal_roi = a * (y) * (1 - y / K)
# fig.add_trace(
# go.Scatter(
# x=52
# * x
# * st.session_state["scenario"].channels[col].conversion_rate,
# y=52 * y,
# name=col,
# customdata=np.stack((roi, marginal_roi), axis=-1),
# hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
# ),
# row=1 + (i) // cols,
# col=i % cols + 1,
# )
# fig.add_trace(
# go.Scatter(
# x=[
# spends
# * st.session_state["scenario"]
# .channels[col]
# .conversion_rate
# ],
# y=[52 * s_curve(spends / (10**power * 52), K, b, a, x0)],
# name=col,
# legendgroup=col,
# showlegend=False,
# marker=dict(color=["black"]),
# ),
# row=1 + (i) // cols,
# col=i % cols + 1,
# )
# shapes.append(
# go.layout.Shape(
# type="line",
# x0=0,
# y0=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
# x1=spends
# * st.session_state["scenario"].channels[col].conversion_rate,
# y1=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
# line_width=1,
# line_dash="dash",
# line_color="black",
# xref=f"x{i+1}",
# yref=f"y{i+1}",
# )
# )
# shapes.append(
# go.layout.Shape(
# type="line",
# x0=spends
# * st.session_state["scenario"].channels[col].conversion_rate,
# y0=0,
# x1=spends
# * st.session_state["scenario"].channels[col].conversion_rate,
# y1=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
# line_width=1,
# line_dash="dash",
# line_color="black",
# xref=f"x{i+1}",
# yref=f"y{i+1}",
# )
# )
# fig.update_layout(
# height=1500,
# width=1000,
# title_text="Response Curves",
# showlegend=False,
# shapes=shapes,
# )
# fig.update_annotations(font_size=10)
# fig.update_xaxes(title="Spends")
# fig.update_yaxes(title=target)
# return fig
# ======================================================== #
# ==================== HTML Components =================== #
# ======================================================== #
def generate_spending_header(heading):
return st.markdown(
f"""<h2 class="spends-header">{heading}</h2>""", unsafe_allow_html=True
)
# ======================================================== #
# =================== Session variables ================== #
# ======================================================== #
with open("config.yaml") as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state["config"] = config
authenticator = stauth.Authenticate(
config["credentials"],
config["cookie"]["name"],
config["cookie"]["key"],
config["cookie"]["expiry_days"],
config["preauthorized"],
)
st.session_state["authenticator"] = authenticator
name, authentication_status, username = authenticator.login("Login", "main")
auth_status = st.session_state.get("authentication_status")
import os
import glob
def get_excel_names(directory):
# Create a list to hold the final parts of the filenames
last_portions = []
# Patterns to match Excel files (.xlsx and .xls) that contain @#
patterns = [
os.path.join(directory, "*@#*.xlsx"),
os.path.join(directory, "*@#*.xls"),
]
# Process each pattern
for pattern in patterns:
files = glob.glob(pattern)
# Extracting the last portion after @# for each file
for file in files:
base_name = os.path.basename(file)
last_portion = base_name.split("@#")[-1]
last_portion = last_portion.replace(".xlsx", "").replace(
".xls", ""
) # Removing extensions
last_portions.append(last_portion)
return last_portions
def name_formating(channel_name):
# Replace underscores with spaces
name_mod = channel_name.replace("_", " ")
# Capitalize the first letter of each word
name_mod = name_mod.title()
return name_mod
def panel_fetch(file_selected):
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
if "Panel" in raw_data_mmm_df.columns:
panel = list(set(raw_data_mmm_df["Panel"]))
else:
raw_data_mmm_df = None
panel = None
return panel
def reset_inputs():
if "total_spends_change_abs" in st.session_state:
del st.session_state.total_spends_change_abs
if "total_spends_change" in st.session_state:
del st.session_state.total_spends_change
if "total_spends_change_abs_slider" in st.session_state:
del st.session_state.total_spends_change_abs_slider
if "total_sales_change_abs" in st.session_state:
del st.session_state.total_sales_change_abs
if "total_sales_change" in st.session_state:
del st.session_state.total_sales_change
if "total_sales_change_abs_slider" in st.session_state:
del st.session_state.total_sales_change_abs_slider
st.session_state["initialized"] = False
if auth_status == True:
authenticator.logout("Logout", "main")
st.header("Simulation")
with st.expander('Optimized Spends Overview'):
if st.button('Refresh'):
st.rerun()
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Define light colors for bars
import plotly.graph_objects as go
from plotly.subplots import make_subplots
st.empty()
#st.header('Model Result Analysis')
spends_data=pd.read_excel('Overview_data_test.xlsx')
with open('summary_df.pkl', 'rb') as file:
summary_df_sorted = pickle.load(file)
#st.write(summary_df_sorted)
# selected_scenario= st.selectbox('Select Saved Scenarios',['S1','S2'])
summary_df_sorted=summary_df_sorted.sort_values(by=['Optimized_spend'],ascending=False)
summary_df_sorted['old_roi']=summary_df_sorted['Old_sales']/summary_df_sorted['Actual_spend']
summary_df_sorted['new_roi']=summary_df_sorted['New_sales']/summary_df_sorted['Optimized_spend']
total_actual_spend = summary_df_sorted['Actual_spend'].sum()
total_optimized_spend = summary_df_sorted['Optimized_spend'].sum()
actual_spend_percentage = (summary_df_sorted['Actual_spend'] / total_actual_spend) * 100
optimized_spend_percentage = (summary_df_sorted['Optimized_spend'] / total_optimized_spend) * 100
light_blue = 'rgba(0, 31, 120, 0.7)'
light_orange = 'rgba(0, 181, 219, 0.7)'
light_green = 'rgba(240, 61, 20, 0.7)'
light_red = 'rgba(250, 110, 10, 0.7)'
light_purple = 'rgba(255, 191, 69, 0.7)'
# Create subplots with one row and two columns
fig = make_subplots(rows=1, cols=3, subplot_titles=("Actual vs. Optimized Spend", "Actual vs. Optimized Contribution", "Actual vs. Optimized ROI"))
# Add actual vs optimized spend bars
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Actual_spend'], name='Actual',
text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '+' (' + actual_spend_percentage.round(2).astype(str) + '%)',
marker_color=light_blue, orientation='h'),
row=1,
col=1)
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Optimized_spend'], name='Optimized',
text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' (' + optimized_spend_percentage.round(2).astype(str) + '%)',
marker_color=light_orange,
orientation='h'),
row=1,
col=1)
fig.update_xaxes(title_text="Amount", row=1, col=1)
# Add actual vs optimized Contribution
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['New_sales'],
name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),
marker_color=light_orange, orientation='h',showlegend=False), row=1, col=2)
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Old_sales'],
name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),
marker_color=light_blue, orientation='h',showlegend=False), row=1, col=2)
fig.update_xaxes(title_text="Contribution", row=1, col=2)
# Add actual vs optimized ROI bars
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['new_roi'],
name='Optimized ROI',text=summary_df_sorted['new_roi'].apply(format_number) ,
marker_color=light_orange, orientation='h',showlegend=False), row=1, col=3)
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['old_roi'],
name='Actual ROI', text=summary_df_sorted['old_roi'].apply(format_number) ,
marker_color=light_blue, orientation='h',showlegend=False), row=1, col=3)
fig.update_xaxes(title_text="ROI", row=1, col=3)
# Update layout
fig.update_layout(title_text="Actual vs. Optimized Metrics for Media Channels",
showlegend=True, yaxis=dict(title='Media Channels', autorange="reversed"))
st.plotly_chart(fig,use_container_width=True)
# fig = make_subplots(rows=1, cols=2, subplot_titles=("Actual Spend", "Optimized Spend"), specs=[[{'type': 'domain'}, {'type': 'domain'}]])
# # Actual spend donut chart
# fig.add_trace(go.Pie(labels=summary_df_sorted['Channel_name'],
# values=summary_df_sorted['Actual_spend'], name='Actual Spend', hole=0.3,
# marker_colors=[light_blue, light_orange, light_green, light_red, light_purple]), row=1, col=1)
# # Optimized spend donut chart
# fig.add_trace(go.Pie(labels=summary_df_sorted['Channel_name'],
# values=summary_df_sorted['Optimized_spend'], name='Optimized Spend', hole=0.3,
# arker_colors=[light_blue, light_orange, light_green, light_red, light_purple]), row=1, col=2)
# # Update layout
# fig.update_layout(title_text="Actual vs. Optimized Spend Distribution")
# # Show plot
# st.plotly_chart(fig, use_container_width=True)
#col1, col2 = st.columns([1, 1])
# Response Metrics
directory = "metrics_level_data"
metrics_list = get_excel_names(directory)
# metrics_selected = col1.selectbox(
# "Response Metrics",
# metrics_list,
# format_func=name_formating,
# index=0,
# on_change=reset_inputs,
# )
metrics_selected='prospects'
# Target
target = name_formating(metrics_selected)
file_selected = (
f"Overview_data_test_panel@#{metrics_selected}.xlsx"
)
# Panel List
panel_list = panel_fetch(file_selected)
# Panel Selected
panel_selected = st.selectbox(
"Markets",
["Total Market"] + panel_list,
index=0,
on_change=reset_inputs,
)
st.session_state['selected_markets']=panel_selected
if "update_rcs" in st.session_state:
updated_rcs = st.session_state["update_rcs"]
else:
updated_rcs = None
if "first_time" not in st.session_state:
st.session_state["first_time"] = True
# Check if state is initiaized
is_state_initiaized = st.session_state.get("initialized", False)
if not is_state_initiaized or st.session_state["first_time"]:
# initialize_data()
if panel_selected == "Total Market":
initialize_data(
panel=panel_selected,
target_file=file_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
panel = None
else:
initialize_data(
panel=panel_selected,
target_file=file_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
st.session_state["initialized"] = True
st.session_state["first_time"] = False
# Channels List
channels_list = st.session_state["channels_list"]
# ======================================================== #
# ========================== UI ========================== #
# ======================================================== #
# print(list(st.session_state.keys()))
main_header = st.columns((2, 2))
sub_header = st.columns((1, 1, 1, 1))
_scenario = st.session_state["scenario"]
if "total_spends_change" not in st.session_state:
st.session_state.total_spends_change = 0
if "total_sales_change" not in st.session_state:
st.session_state.total_sales_change = 0
if "total_spends_change_abs" not in st.session_state:
st.session_state["total_spends_change_abs"] = numerize(
_scenario.actual_total_spends, 1
)
if "total_sales_change_abs" not in st.session_state:
st.session_state["total_sales_change_abs"] = numerize(
_scenario.actual_total_sales, 1
)
if "total_spends_change_abs_slider" not in st.session_state:
st.session_state.total_spends_change_abs_slider = numerize(
_scenario.actual_total_spends, 1
)
if "total_sales_change_abs_slider" not in st.session_state:
st.session_state.total_sales_change_abs_slider = numerize(
_scenario.actual_total_sales, 1
)
with main_header[0]:
st.subheader("Actual")
with main_header[-1]:
st.subheader("Simulated")
with sub_header[0]:
st.metric(label="Spends", value=format_numbers(_scenario.actual_total_spends))
with sub_header[1]:
st.metric(
label=target,
value=format_numbers(
float(_scenario.actual_total_sales)
),
)
with sub_header[2]:
st.metric(
label="Spends",
value=format_numbers(_scenario.modified_total_spends),
delta=numerize(_scenario.delta_spends, 1),
)
with sub_header[3]:
st.metric(
label=target,
value=format_numbers(
float(_scenario.modified_total_sales)
),
delta=numerize(_scenario.delta_sales, 1),
)
with st.expander("Channel Spends Simulator", expanded=True):
_columns1 = st.columns((2, 2, 1, 1))
with _columns1[0]:
optimization_selection = st.selectbox(
"Optimize", options=["Media Spends", target], key="optimization_key"
)
with _columns1[1]:
st.markdown("#")
# if st.checkbox(
# label="Optimize all Channels",
# key="optimze_all_channels",
# value=False,
# # on_change=select_all_channels_for_optimization,
# ):
# select_all_channels_for_optimization()
st.checkbox(
label="Optimize all Channels",
key="optimze_all_channels",
value=False,
on_change=select_all_channels_for_optimization,
)
with _columns1[2]:
st.markdown("#")
# st.button(
# "Optimize",
# on_click=optimize,
# args=(st.session_state["optimization_key"]),
# use_container_width=True,
# )
optimize_placeholder = st.empty()
with _columns1[3]:
st.markdown("#")
st.button(
"Reset",
on_click=reset_scenario,
args=(panel_selected, file_selected, updated_rcs)
)
_columns2 = st.columns((2, 2, 2))
if st.session_state["optimization_key"] == "Media Spends":
with _columns2[0]:
spend_input = st.text_input(
"Absolute",
key="total_spends_change_abs",
# label_visibility="collapsed",
on_change=update_all_spends_abs,
)
with _columns2[1]:
st.number_input(
"Percent Change",
key="total_spends_change",
min_value=-50,
max_value=50,
step=1,
on_change=update_spends,
)
with _columns2[2]:
min_value = round(_scenario.actual_total_spends * 0.5)
max_value = round(_scenario.actual_total_spends * 1.5)
st.session_state["total_spends_change_abs_slider_options"] = [
numerize(value, 1)
for value in range(min_value, max_value + 1, int(1e4))
]
# st.select_slider(
# "Absolute Slider",
# options=st.session_state["total_spends_change_abs_slider_options"],
# key="total_spends_change_abs_slider",
# on_change=update_all_spends_abs_slider,
# )
elif st.session_state["optimization_key"] == target:
with _columns2[0]:
sales_input = st.text_input(
"Absolute",
key="total_sales_change_abs",
on_change=update_sales_abs,
)
with _columns2[1]:
st.number_input(
"Percent Change",
key="total_sales_change",
min_value=-50,
max_value=50,
step=1,
on_change=update_sales,
)
with _columns2[2]:
min_value = round(_scenario.actual_total_sales * 0.5)
max_value = round(_scenario.actual_total_sales * 1.5)
st.session_state["total_sales_change_abs_slider_options"] = [
numerize(value, 1)
for value in range(min_value, max_value + 1, int(1e5))
]
st.select_slider(
"Absolute Slider",
options=st.session_state["total_sales_change_abs_slider_options"],
key="total_sales_change_abs_slider",
on_change=update_sales_abs_slider,
)
if (
not st.session_state["allow_sales_update"]
and optimization_selection == target
):
st.warning("Invalid Input")
if (
not st.session_state["allow_spends_update"]
and optimization_selection == "Media Spends"
):
st.warning("Invalid Input")
status_placeholder = st.empty()
# if optimize_placeholder.button("Optimize", use_container_width=True):
# optimize(st.session_state["optimization_key"], status_placeholder)
# st.rerun()
optimize_placeholder.button(
"Optimize",
on_click=optimize,
args=(st.session_state["optimization_key"], status_placeholder),
use_container_width=True,
)
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
_columns = st.columns((2.5, 2, 1.5, 1.5, 1))
with _columns[0]:
generate_spending_header("Channel")
with _columns[1]:
generate_spending_header("Spends Input")
with _columns[2]:
generate_spending_header("Spends")
with _columns[3]:
generate_spending_header(target)
with _columns[4]:
generate_spending_header("Optimize")
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
if "acutual_predicted" not in st.session_state:
st.session_state["acutual_predicted"] = {
"Channel_name": [],
"Actual_spend": [],
"Optimized_spend": [],
"Delta": [],
"New_sales":[],
"Old_sales":[]
}
for i, channel_name in enumerate(channels_list):
_channel_class = st.session_state["scenario"].channels[channel_name]
_columns = st.columns((2.5, 1.5, 1.5, 1.5, 1))
with _columns[0]:
st.write(channel_name_formating(channel_name))
bin_placeholder = st.container()
with _columns[1]:
channel_bounds = _channel_class.bounds
channel_spends = float(_channel_class.actual_total_spends)
min_value = float((1 + channel_bounds[0] / 100) * channel_spends)
max_value = float((1 + channel_bounds[1] / 100) * channel_spends)
##print(st.session_state[channel_name])
spend_input = st.text_input(
channel_name,
key=channel_name,
label_visibility="collapsed",
on_change=partial(update_data, channel_name),
)
if not validate_input(spend_input):
st.error("Invalid input")
channel_name_current = f"{channel_name}_change"
st.number_input(
"Percent Change",
key=channel_name_current,
step=1,
on_change=partial(update_data_by_percent, channel_name),
)
with _columns[2]:
# spends
current_channel_spends = float(
_channel_class.modified_total_spends
* _channel_class.conversion_rate
)
actual_channel_spends = float(
_channel_class.actual_total_spends * _channel_class.conversion_rate
)
spends_delta = float(
_channel_class.delta_spends * _channel_class.conversion_rate
)
st.session_state["acutual_predicted"]["Channel_name"].append(
channel_name
)
st.session_state["acutual_predicted"]["Actual_spend"].append(
actual_channel_spends
)
st.session_state["acutual_predicted"]["Optimized_spend"].append(
current_channel_spends
)
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
## REMOVE
st.metric(
"Spends",
format_numbers(current_channel_spends),
delta=numerize(spends_delta, 1),
label_visibility="collapsed",
)
with _columns[3]:
# sales
current_channel_sales = float(_channel_class.modified_total_sales)
actual_channel_sales = float(_channel_class.actual_total_sales)
sales_delta = float(_channel_class.delta_sales)
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
#st.write(actual_channel_sales)
st.metric(
target,
format_numbers(current_channel_sales),
delta=numerize(sales_delta, 1),
label_visibility="collapsed",
)
with _columns[4]:
# if st.checkbox(
# label="select for optimization",
# key=f"{channel_name}_selected",
# value=False,
# # on_change=partial(select_channel_for_optimization, channel_name),
# label_visibility="collapsed",
# ):
# select_channel_for_optimization(channel_name)
st.checkbox(
label="select for optimization",
key=f"{channel_name}_selected",
value=False,
on_change=partial(select_channel_for_optimization, channel_name),
label_visibility="collapsed",
)
st.markdown(
"""<hr class="spends-child-seperator">""",
unsafe_allow_html=True,
)
# Bins
col = channels_list[i]
x_actual = st.session_state["scenario"].channels[col].actual_spends
x_modified = st.session_state["scenario"].channels[col].modified_spends
x_total = x_modified.sum()
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
updated_rcs_key = f"{metrics_selected}#@{panel_selected}#@{channel_name}"
if updated_rcs and updated_rcs_key in list(updated_rcs.keys()):
K = updated_rcs[updated_rcs_key]["K"]
b = updated_rcs[updated_rcs_key]["b"]
a = updated_rcs[updated_rcs_key]["a"]
x0 = updated_rcs[updated_rcs_key]["x0"]
else:
K = st.session_state["rcs"][col]["K"]
b = st.session_state["rcs"][col]["b"]
a = st.session_state["rcs"][col]["a"]
x0 = st.session_state["rcs"][col]["x0"]
x_plot = np.linspace(0, 5 * x_actual.sum(), 200)
# Append current_channel_spends to the end of x_plot
x_plot = np.append(x_plot, current_channel_spends)
x, y, marginal_roi = [], [], []
for x_p in x_plot:
x.append(x_p * x_actual / x_actual.sum())
for index in range(len(x_plot)):
y.append(s_curve(x[index] / 10**power, K, b, a, x0))
for index in range(len(x_plot)):
marginal_roi.append(
a * y[index] * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
)
x = (
np.sum(x, axis=1)
* st.session_state["scenario"].channels[col].conversion_rate
)
y = np.sum(y, axis=1)
marginal_roi = (
np.average(marginal_roi, axis=1)
/ st.session_state["scenario"].channels[col].conversion_rate
)
roi = y / np.maximum(x, np.finfo(float).eps)
#st.write(roi[-1])
roi_current, marginal_roi_current = roi[-1], marginal_roi[-1]
x, y, roi, marginal_roi = (
x[:-1],
y[:-1],
roi[:-1],
marginal_roi[:-1],
) # Drop data for current spends
start_value, end_value, left_value, right_value = find_segment_value(
x,
roi,
marginal_roi,
)
#st.write(roi_current)
rgba = calculate_rgba(
start_value,
end_value,
left_value,
right_value,
current_channel_spends,
)
with bin_placeholder:
st.markdown(
f"""
<div style="
border-radius: 12px;
background-color: {rgba};
padding: 10px;
text-align: center;
color: #006EC0;
">
<p style="margin: 0; font-size: 20px;">ROI: {round(roi_current,1)}</p>
<p style="margin: 0; font-size: 20px;">Marginal ROI: {round(marginal_roi_current,1)}</p>
</div>
""",
unsafe_allow_html=True,
)
# with st.expander("See Response Curves", expanded=True):
# fig = plot_response_curves()
# st.plotly_chart(fig, use_container_width=True)
# _columns = st.columns(2)
# # with _columns[0]:
# st.subheader("Save Scenario")
# scenario_name = st.text_input(
# "Scenario name",
# key="scenario_input",
# placeholder="Scenario name",
# label_visibility="collapsed",
# )
# st.button(
# "Save",
# on_click=lambda: save_scenario(scenario_name),
# disabled=len(st.session_state["scenario_input"]) == 0,use_container_width=True
# )
# summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
# summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
# summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
# summary_df_sorted["Delta_percent"] = np.round(
# ((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
# * 100,
# 2,
# )
with open("summary_df.pkl", "wb") as f:
pickle.dump(summary_df_sorted, f)
# st.dataframe(summary_df_sorted)
# ___columns=st.columns(3)
# with ___columns[2]:
# fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent')
# st.plotly_chart(fig,use_container_width=True)
# with ___columns[0]:
# fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend')
# st.plotly_chart(fig,use_container_width=True)
# with ___columns[1]:
# fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend')
# st.plotly_chart(fig,use_container_width=True)
elif auth_status == False:
st.error("Username/Password is incorrect")
if auth_status != True:
try:
username_forgot_pw, email_forgot_password, random_password = (
authenticator.forgot_password("Forgot password")
)
if username_forgot_pw:
st.session_state["config"]["credentials"]["usernames"][username_forgot_pw][
"password"
] = stauth.Hasher([random_password]).generate()[0]
send_email(email_forgot_password, random_password)
st.success("New password sent securely")
# Random password to be transferred to user securely
elif username_forgot_pw == False:
st.error("Username not found")
except Exception as e:
st.error(e)