|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import os |
|
from huggingface_hub import login |
|
|
|
|
|
login(token=os.getenv("HUGGINGFACE_HUB_TOKEN")) |
|
|
|
MODEL_NAME = "pymmdrza/TPT_v1" |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_model() |
|
|
|
st.title("Teste do Modelo TPT_v1") |
|
|
|
input_text = st.text_area("Digite o texto de entrada:") |
|
|
|
if st.button("Gerar Resposta"): |
|
if input_text: |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
st.write("Resposta gerada:") |
|
st.success(response) |
|
else: |
|
st.warning("Digite um texto para gerar uma resposta.") |
|
|