"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"4e64b2267c9c4213a5914056f6811d1b","version_major":2,"version_minor":0},"text/plain":["Map: 0%| | 0/334 [00:00, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"d8a6498191004820915b4afa95877b35","version_major":2,"version_minor":0},"text/plain":["Map: 0%| | 0/43 [00:00, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...\n"]},{"data":{"text/html":["\n"," \n"," \n","
\n"," [66/66 10:49, Epoch 6/6]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 3.005400 | \n"," 2.068154 | \n","
\n"," \n"," 20 | \n"," 1.436200 | \n"," 1.290664 | \n","
\n"," \n"," 30 | \n"," 0.778100 | \n"," 1.072349 | \n","
\n"," \n"," 40 | \n"," 0.613200 | \n"," 0.931616 | \n","
\n"," \n"," 50 | \n"," 0.496900 | \n"," 0.921341 | \n","
\n"," \n"," 60 | \n"," 0.468000 | \n"," 0.888872 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:04]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.006 MB uploaded\\r'), FloatProgress(value=1.0, max=1.0)))"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▃▂▁▁▁▁ |
eval/runtime | ▁▅▇▇▇█▇ |
eval/samples_per_second | █▄▂▂▂▁▂ |
eval/steps_per_second | █▄▂▂▁▁▂ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▄▄▅▅▆▆▇▇██ |
train/global_step | ▁▁▂▂▃▃▅▅▆▆▇▇███ |
train/learning_rate | █▇▅▄▂▁ |
train/loss | █▄▂▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.88887 |
eval/runtime | 5.8859 |
eval/samples_per_second | 7.306 |
eval/steps_per_second | 1.019 |
eval_loss | 0.88887 |
train/epoch | 6.0 |
train/global_step | 66 |
train/learning_rate | 2e-05 |
train/loss | 0.468 |
train/total_flos | 2090258212601856.0 |
train/train_loss | 1.06766 |
train/train_runtime | 658.5513 |
train/train_samples_per_second | 3.043 |
train/train_steps_per_second | 0.1 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run vermilion-springroll-11 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/r9yt9wy0
Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_142852-r9yt9wy0/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 14:40:09,515] Trial 0 finished with value: 0.8888720870018005 and parameters: {'learning_rate': 0.00022063199006940203, 'num_train_epochs': 6, 'per_device_train_batch_size': 32, 'warmup_steps': 3}. Best is trial 0 with value: 0.8888720870018005.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"3de6384b3841485d8068f7265fbda30e","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113223888807826, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_144009-p10q3kv9
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run lunar-ox-12 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/p10q3kv9"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"0a6c66cadea549f78fe5a183e841734e","version_major":2,"version_minor":0},"text/plain":["Map: 0%| | 0/334 [00:00, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"ecaa3ec058144a44abbe1a4318e3cc8e","version_major":2,"version_minor":0},"text/plain":["Map: 0%| | 0/43 [00:00, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [66/66 10:55, Epoch 6/6]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.881900 | \n"," 1.890017 | \n","
\n"," \n"," 20 | \n"," 1.003600 | \n"," 1.057150 | \n","
\n"," \n"," 30 | \n"," 0.615700 | \n"," 0.908779 | \n","
\n"," \n"," 40 | \n"," 0.500400 | \n"," 0.848109 | \n","
\n"," \n"," 50 | \n"," 0.430000 | \n"," 0.856009 | \n","
\n"," \n"," 60 | \n"," 0.402800 | \n"," 0.839791 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.023 MB uploaded\\r'), FloatProgress(value=0.2557933392427504, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▂▁▁▁▁▁ |
eval/runtime | ▁▄▆█▆▆▅ |
eval/samples_per_second | █▅▃▁▃▃▃ |
eval/steps_per_second | █▅▃▁▄▃▄ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▄▄▅▅▆▆▇▇██ |
train/global_step | ▁▁▂▂▃▃▅▅▆▆▇▇███ |
train/learning_rate | █▇▅▄▂▁ |
train/loss | █▃▂▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.83979 |
eval/runtime | 5.9095 |
eval/samples_per_second | 7.276 |
eval/steps_per_second | 1.015 |
eval_loss | 0.83979 |
train/epoch | 6.0 |
train/global_step | 66 |
train/learning_rate | 4e-05 |
train/loss | 0.4028 |
train/total_flos | 2090258212601856.0 |
train/train_loss | 0.91779 |
train/train_runtime | 664.2846 |
train/train_samples_per_second | 3.017 |
train/train_steps_per_second | 0.099 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run lunar-ox-12 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/p10q3kv9
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_144009-p10q3kv9/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 14:51:33,062] Trial 1 finished with value: 0.8397907614707947 and parameters: {'learning_rate': 0.000388078354781562, 'num_train_epochs': 6, 'per_device_train_batch_size': 32, 'warmup_steps': 5}. Best is trial 1 with value: 0.8397907614707947.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"9a11d1cc83a44c18a071c37ee29cb191","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113095899862755, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_145133-zcwhia3h
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run lunar-envelope-13 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/zcwhia3h"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [120/168 11:45 < 04:46, 0.17 it/s, Epoch 5/8]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.805400 | \n"," 1.864337 | \n","
\n"," \n"," 20 | \n"," 1.078500 | \n"," 1.049373 | \n","
\n"," \n"," 30 | \n"," 0.637600 | \n"," 0.906046 | \n","
\n"," \n"," 40 | \n"," 0.549300 | \n"," 0.883616 | \n","
\n"," \n"," 50 | \n"," 0.491300 | \n"," 0.882419 | \n","
\n"," \n"," 60 | \n"," 0.456700 | \n"," 0.849847 | \n","
\n"," \n"," 70 | \n"," 0.431200 | \n"," 0.859990 | \n","
\n"," \n"," 80 | \n"," 0.410700 | \n"," 0.856455 | \n","
\n"," \n"," 90 | \n"," 0.398700 | \n"," 0.832274 | \n","
\n"," \n"," 100 | \n"," 0.375900 | \n"," 0.863837 | \n","
\n"," \n"," 110 | \n"," 0.387600 | \n"," 0.843072 | \n","
\n"," \n"," 120 | \n"," 0.374900 | \n"," 0.846136 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.17044687077892842, max=1.…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▂▂▁▁▁▁▁▁▁▁▁▁ |
eval/runtime | ▁▃▄▅▃▄▃▃▅█▅▅▄ |
eval/samples_per_second | █▆▅▄▆▅▆▆▄▁▄▄▅ |
eval/steps_per_second | █▆▅▄▅▅▆▆▄▁▄▄▄ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▂▂▃▃▄▄▄▄▅▅▅▅▆▆▇▇▇▇████ |
train/global_step | ▁▁▂▂▂▂▃▃▄▄▄▄▅▅▅▅▆▆▇▇▇▇█████ |
train/learning_rate | █▇▇▆▅▅▄▄▃▂▂▁ |
train/loss | █▃▂▂▁▁▁▁▁▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.83227 |
eval/runtime | 5.8969 |
eval/samples_per_second | 7.292 |
eval/steps_per_second | 1.017 |
eval_loss | 0.83227 |
train/epoch | 5.71 |
train/global_step | 120 |
train/learning_rate | 0.00011 |
train/loss | 0.3749 |
train/total_flos | 1821144316674048.0 |
train/train_loss | 0.69982 |
train/train_runtime | 710.1571 |
train/train_samples_per_second | 3.763 |
train/train_steps_per_second | 0.237 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run lunar-envelope-13 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/zcwhia3h
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_145133-zcwhia3h/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 15:03:40,491] Trial 2 finished with value: 0.8322736024856567 and parameters: {'learning_rate': 0.00038013816677024434, 'num_train_epochs': 8, 'per_device_train_batch_size': 16, 'warmup_steps': 4}. Best is trial 2 with value: 0.8322736024856567.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"192adca007164c1188758c608dfd03f7","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.01111326985539765, max=1.0)…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_150340-0rux0mbt
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run dazzling-orchid-14 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/0rux0mbt"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [84/84 08:09, Epoch 4/4]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 3.117100 | \n"," 2.101251 | \n","
\n"," \n"," 20 | \n"," 1.543500 | \n"," 1.223637 | \n","
\n"," \n"," 30 | \n"," 0.765800 | \n"," 1.053006 | \n","
\n"," \n"," 40 | \n"," 0.633500 | \n"," 0.956405 | \n","
\n"," \n"," 50 | \n"," 0.551300 | \n"," 0.914150 | \n","
\n"," \n"," 60 | \n"," 0.488700 | \n"," 0.883170 | \n","
\n"," \n"," 70 | \n"," 0.453200 | \n"," 0.863325 | \n","
\n"," \n"," 80 | \n"," 0.431700 | \n"," 0.861434 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.022 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.6507556781402156, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▃▂▂▁▁▁▁▁ |
eval/runtime | ▁▄▃▅█▆▅▇▅ |
eval/samples_per_second | █▅▆▄▁▃▄▂▄ |
eval/steps_per_second | █▅▆▅▁▃▅▂▄ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▃▃▄▄▅▅▆▆▇▇████ |
train/global_step | ▁▁▂▂▃▃▄▄▅▅▆▆▇▇█████ |
train/learning_rate | █▇▆▅▄▃▂▁ |
train/loss | █▄▂▂▁▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.86143 |
eval/runtime | 5.9003 |
eval/samples_per_second | 7.288 |
eval/steps_per_second | 1.017 |
eval_loss | 0.86143 |
train/epoch | 4.0 |
train/global_step | 84 |
train/learning_rate | 1e-05 |
train/loss | 0.4317 |
train/total_flos | 1274022822739968.0 |
train/train_loss | 0.96978 |
train/train_runtime | 494.7488 |
train/train_samples_per_second | 2.7 |
train/train_steps_per_second | 0.17 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run dazzling-orchid-14 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/0rux0mbt
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_150340-0rux0mbt/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 15:12:11,748] Trial 3 finished with value: 0.8614340424537659 and parameters: {'learning_rate': 0.00023956952379873406, 'num_train_epochs': 4, 'per_device_train_batch_size': 16, 'warmup_steps': 5}. Best is trial 2 with value: 0.8322736024856567.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"f7b8197a4e4c4242a7965774efc249e1","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113144411097488, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_151211-6nazgql4
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run prosperous-dragon-15 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/6nazgql4"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [66/66 10:56, Epoch 6/6]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.680100 | \n"," 1.782772 | \n","
\n"," \n"," 20 | \n"," 0.894100 | \n"," 1.025657 | \n","
\n"," \n"," 30 | \n"," 0.587400 | \n"," 0.897337 | \n","
\n"," \n"," 40 | \n"," 0.476300 | \n"," 0.830805 | \n","
\n"," \n"," 50 | \n"," 0.420400 | \n"," 0.864126 | \n","
\n"," \n"," 60 | \n"," 0.394900 | \n"," 0.841267 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.1705031517334534, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▂▁▁▁▁▁ |
eval/runtime | ▁▇▆▆█▇▅ |
eval/samples_per_second | █▂▄▄▁▂▄ |
eval/steps_per_second | █▁▃▃▁▁▃ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▄▄▅▅▆▆▇▇██ |
train/global_step | ▁▁▂▂▃▃▅▅▆▆▇▇███ |
train/learning_rate | █▇▅▄▂▁ |
train/loss | █▃▂▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.83081 |
eval/runtime | 5.9104 |
eval/samples_per_second | 7.275 |
eval/steps_per_second | 1.015 |
eval_loss | 0.83081 |
train/epoch | 6.0 |
train/global_step | 66 |
train/learning_rate | 4e-05 |
train/loss | 0.3949 |
train/total_flos | 2090258212601856.0 |
train/train_loss | 0.85955 |
train/train_runtime | 665.5241 |
train/train_samples_per_second | 3.011 |
train/train_steps_per_second | 0.099 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run prosperous-dragon-15 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/6nazgql4
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_151211-6nazgql4/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 15:23:34,430] Trial 4 finished with value: 0.8308054208755493 and parameters: {'learning_rate': 0.00041915607985727055, 'num_train_epochs': 6, 'per_device_train_batch_size': 32, 'warmup_steps': 3}. Best is trial 4 with value: 0.8308054208755493.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"d8dc9ac41d544e3fb4094e8c4b80cecc","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113028755709011, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_152334-gqh7mnqx
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run crimson-dragon-16 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/gqh7mnqx"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [44/44 07:13, Epoch 4/4]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.606400 | \n"," 1.642761 | \n","
\n"," \n"," 20 | \n"," 0.800100 | \n"," 1.017194 | \n","
\n"," \n"," 30 | \n"," 0.585700 | \n"," 0.903642 | \n","
\n"," \n"," 40 | \n"," 0.473400 | \n"," 0.855594 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.17057383277516674, max=1.…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▂▁▁▁ |
eval/runtime | ▁▅▅█▁ |
eval/samples_per_second | █▄▅▁█ |
eval/steps_per_second | █▅▅▁█ |
eval_loss | ▁ |
train/epoch | ▁▁▃▃▅▅▇▇██ |
train/global_step | ▁▁▃▃▅▅▇▇███ |
train/learning_rate | █▆▃▁ |
train/loss | █▂▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.85559 |
eval/runtime | 5.9033 |
eval/samples_per_second | 7.284 |
eval/steps_per_second | 1.016 |
eval_loss | 0.85559 |
train/epoch | 4.0 |
train/global_step | 44 |
train/learning_rate | 5e-05 |
train/loss | 0.4734 |
train/total_flos | 1395517145776128.0 |
train/train_loss | 1.0546 |
train/train_runtime | 442.5635 |
train/train_samples_per_second | 3.019 |
train/train_steps_per_second | 0.099 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run crimson-dragon-16 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/gqh7mnqx
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_152334-gqh7mnqx/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 15:31:13,768] Trial 5 finished with value: 0.855594277381897 and parameters: {'learning_rate': 0.0004882684074952214, 'num_train_epochs': 4, 'per_device_train_batch_size': 32, 'warmup_steps': 3}. Best is trial 4 with value: 0.8308054208755493.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"b17199cf7d1c41ee969d27814d9efe8b","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113176900026802, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_153113-emmid59b
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run beaming-paper-17 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/emmid59b"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [66/66 10:55, Epoch 6/6]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.814500 | \n"," 1.876597 | \n","
\n"," \n"," 20 | \n"," 1.022200 | \n"," 1.064405 | \n","
\n"," \n"," 30 | \n"," 0.624600 | \n"," 0.902199 | \n","
\n"," \n"," 40 | \n"," 0.507500 | \n"," 0.854691 | \n","
\n"," \n"," 50 | \n"," 0.436200 | \n"," 0.856049 | \n","
\n"," \n"," 60 | \n"," 0.407800 | \n"," 0.836567 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.17026547676022635, max=1.…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▃▁▁▁▁▁ |
eval/runtime | ▁▁▄▃█▅▃ |
eval/samples_per_second | ██▅▅▁▄▆ |
eval/steps_per_second | ██▄▅▁▄▅ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▄▄▅▅▆▆▇▇██ |
train/global_step | ▁▁▂▂▃▃▅▅▆▆▇▇███ |
train/learning_rate | █▇▅▄▂▁ |
train/loss | █▃▂▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.83657 |
eval/runtime | 5.9028 |
eval/samples_per_second | 7.285 |
eval/steps_per_second | 1.016 |
eval_loss | 0.83657 |
train/epoch | 6.0 |
train/global_step | 66 |
train/learning_rate | 4e-05 |
train/loss | 0.4078 |
train/total_flos | 2090258212601856.0 |
train/train_loss | 0.91464 |
train/train_runtime | 664.3977 |
train/train_samples_per_second | 3.016 |
train/train_steps_per_second | 0.099 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run beaming-paper-17 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/emmid59b
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_153113-emmid59b/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 15:42:35,259] Trial 6 finished with value: 0.8365665674209595 and parameters: {'learning_rate': 0.000371977101120841, 'num_train_epochs': 6, 'per_device_train_batch_size': 32, 'warmup_steps': 4}. Best is trial 4 with value: 0.8308054208755493.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"3718f807c93646f8ba07bbc2d3594547","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113231277947003, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_154235-x78afq0n
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run glittering-monkey-18 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/x78afq0n"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [44/44 07:14, Epoch 4/4]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 3.195100 | \n"," 2.187073 | \n","
\n"," \n"," 20 | \n"," 1.574500 | \n"," 1.620554 | \n","
\n"," \n"," 30 | \n"," 0.901500 | \n"," 1.120180 | \n","
\n"," \n"," 40 | \n"," 0.690900 | \n"," 1.036435 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.17055463319920083, max=1.…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▅▂▁▁ |
eval/runtime | ▁▆▄█▅ |
eval/samples_per_second | █▃▅▁▄ |
eval/steps_per_second | █▃▅▁▄ |
eval_loss | ▁ |
train/epoch | ▁▁▃▃▅▅▇▇██ |
train/global_step | ▁▁▃▃▅▅▇▇███ |
train/learning_rate | █▆▃▁ |
train/loss | █▃▂▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 1.03644 |
eval/runtime | 5.9099 |
eval/samples_per_second | 7.276 |
eval/steps_per_second | 1.015 |
eval_loss | 1.03644 |
train/epoch | 4.0 |
train/global_step | 44 |
train/learning_rate | 2e-05 |
train/loss | 0.6909 |
train/total_flos | 1395517145776128.0 |
train/train_loss | 1.50181 |
train/train_runtime | 442.6998 |
train/train_samples_per_second | 3.018 |
train/train_steps_per_second | 0.099 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run glittering-monkey-18 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/x78afq0n
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_154235-x78afq0n/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 15:50:14,768] Trial 7 finished with value: 1.0364350080490112 and parameters: {'learning_rate': 0.00021352963324526537, 'num_train_epochs': 4, 'per_device_train_batch_size': 32, 'warmup_steps': 5}. Best is trial 4 with value: 0.8308054208755493.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"d31e8ddbc07347adb1c8a3798ee36db8","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113219644499218, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_155014-8e8ip35f
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run beaming-fuse-19 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/8e8ip35f"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [120/126 11:45 < 00:35, 0.17 it/s, Epoch 5/6]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.719600 | \n"," 1.833074 | \n","
\n"," \n"," 20 | \n"," 1.075200 | \n"," 1.046847 | \n","
\n"," \n"," 30 | \n"," 0.640200 | \n"," 0.922950 | \n","
\n"," \n"," 40 | \n"," 0.550400 | \n"," 0.871228 | \n","
\n"," \n"," 50 | \n"," 0.498600 | \n"," 0.876081 | \n","
\n"," \n"," 60 | \n"," 0.453900 | \n"," 0.857398 | \n","
\n"," \n"," 70 | \n"," 0.428300 | \n"," 0.860341 | \n","
\n"," \n"," 80 | \n"," 0.409600 | \n"," 0.856458 | \n","
\n"," \n"," 90 | \n"," 0.394100 | \n"," 0.830379 | \n","
\n"," \n"," 100 | \n"," 0.371500 | \n"," 0.847909 | \n","
\n"," \n"," 110 | \n"," 0.381800 | \n"," 0.842489 | \n","
\n"," \n"," 120 | \n"," 0.359500 | \n"," 0.851102 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:04]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.012 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.35110723430597374, max=1.…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▃▂▁▁▁▁▁▁▁▁▁▁ |
eval/runtime | ▁▂▂▃▄▆█▄█▇▅█▁ |
eval/samples_per_second | █▇▇▆▅▃▁▅▁▂▄▁█ |
eval/steps_per_second | ▇▇▇▆▅▃▁▅▁▁▅▁█ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▂▂▃▃▄▄▄▄▅▅▅▅▆▆▇▇▇▇████ |
train/global_step | ▁▁▂▂▂▂▃▃▄▄▄▄▅▅▅▅▆▆▇▇▇▇█████ |
train/learning_rate | █▇▇▆▅▅▄▄▃▂▂▁ |
train/loss | █▃▂▂▁▁▁▁▁▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.83038 |
eval/runtime | 5.8734 |
eval/samples_per_second | 7.321 |
eval/steps_per_second | 1.022 |
eval_loss | 0.83038 |
train/epoch | 5.71 |
train/global_step | 120 |
train/learning_rate | 2e-05 |
train/loss | 0.3595 |
train/total_flos | 1821144316674048.0 |
train/train_loss | 0.69023 |
train/train_runtime | 710.9352 |
train/train_samples_per_second | 2.819 |
train/train_steps_per_second | 0.177 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run beaming-fuse-19 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/8e8ip35f
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_155014-8e8ip35f/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 16:02:22,467] Trial 8 finished with value: 0.8303791284561157 and parameters: {'learning_rate': 0.0003782307395143863, 'num_train_epochs': 6, 'per_device_train_batch_size': 16, 'warmup_steps': 3}. Best is trial 8 with value: 0.8303791284561157.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"d8cdb5224da6481691ab8959404e3d24","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011113188377607407, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_160222-bob3m06p
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run dazzling-ox-20 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/Education-Chatbot-Optimization"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/bob3m06p"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [140/168 13:43 < 02:47, 0.17 it/s, Epoch 6/8]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.785900 | \n"," 1.793209 | \n","
\n"," \n"," 20 | \n"," 1.003300 | \n"," 1.026370 | \n","
\n"," \n"," 30 | \n"," 0.611100 | \n"," 0.900247 | \n","
\n"," \n"," 40 | \n"," 0.545900 | \n"," 0.883518 | \n","
\n"," \n"," 50 | \n"," 0.486400 | \n"," 0.883806 | \n","
\n"," \n"," 60 | \n"," 0.444200 | \n"," 0.881959 | \n","
\n"," \n"," 70 | \n"," 0.432800 | \n"," 0.877395 | \n","
\n"," \n"," 80 | \n"," 0.410800 | \n"," 0.867789 | \n","
\n"," \n"," 90 | \n"," 0.400000 | \n"," 0.852276 | \n","
\n"," \n"," 100 | \n"," 0.373100 | \n"," 0.867085 | \n","
\n"," \n"," 110 | \n"," 0.386200 | \n"," 0.850435 | \n","
\n"," \n"," 120 | \n"," 0.373800 | \n"," 0.855305 | \n","
\n"," \n"," 130 | \n"," 0.392000 | \n"," 0.853369 | \n","
\n"," \n"," 140 | \n"," 0.360400 | \n"," 0.869668 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [6/6 00:05]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.1705731731337404, max=1.0…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▂▁▁▁▁▁▁▁▁▁▁▁▁▁ |
eval/runtime | ▁▄▅▆▆▆▆▇▇█▆▆▆▇▆ |
eval/samples_per_second | █▅▄▃▃▃▃▂▁▁▃▃▃▂▃ |
eval/steps_per_second | █▅▄▂▃▄▃▂▂▁▂▃▄▂▃ |
eval_loss | ▁ |
train/epoch | ▁▁▂▂▂▂▃▃▃▃▄▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇████ |
train/global_step | ▁▁▂▂▂▂▃▃▃▃▄▄▄▄▅▅▅▅▆▆▆▆▇▇▇▇█████ |
train/learning_rate | █▇▇▆▆▅▅▄▄▃▃▂▂▁ |
train/loss | █▃▂▂▁▁▁▁▁▁▁▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.85044 |
eval/runtime | 5.8867 |
eval/samples_per_second | 7.305 |
eval/steps_per_second | 1.019 |
eval_loss | 0.85044 |
train/epoch | 6.67 |
train/global_step | 140 |
train/learning_rate | 8e-05 |
train/loss | 0.3604 |
train/total_flos | 2129326975303680.0 |
train/train_loss | 0.64328 |
train/train_runtime | 828.8076 |
train/train_samples_per_second | 3.224 |
train/train_steps_per_second | 0.203 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run dazzling-ox-20 at: https://wandb.ai/szehanz/Education-Chatbot-Optimization/runs/bob3m06p
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_160222-bob3m06p/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["[I 2024-02-19 16:16:28,206] Trial 9 finished with value: 0.8504351377487183 and parameters: {'learning_rate': 0.000457264058410859, 'num_train_epochs': 8, 'per_device_train_batch_size': 16, 'warmup_steps': 5}. Best is trial 8 with value: 0.8303791284561157.\n"]}],"source":["def objective(trial):\n","\n"," # Define hyperparameters outside the wandb.init to use them later in the code\n"," learning_rate = trial.suggest_float('learning_rate', 2e-4, 5e-4, log=True)\n"," num_train_epochs = trial.suggest_categorical('num_train_epochs', [4, 6, 8])\n"," per_device_train_batch_size = trial.suggest_categorical('per_device_train_batch_size', [16, 32])\n"," warmup_steps = trial.suggest_int('warmup_steps', 3, 5)\n","\n"," wandb.init(\n"," project=\"Education-Chatbot-Optimization\",\n"," entity=\"szehanz\",\n"," group=\"optuna-optimization\",\n"," job_type=\"hyperparameter_search\",\n"," reinit=True,\n"," config={\n"," \"learning_rate\": learning_rate,\n"," \"num_train_epochs\": num_train_epochs,\n"," \"per_device_train_batch_size\": per_device_train_batch_size,\n"," \"warmup_steps\": warmup_steps\n"," }\n"," )\n","\n"," # Format the current date and time\n"," current_time = datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n"," output_dir = f\"train_out_dir_{current_time}\" # Append the current date and time to the directory name\n","\n"," # Create the output directory\n"," os.makedirs(output_dir, exist_ok=True) # Using exist_ok=True to avoid error if the directory already exists\n","\n","\n"," # Define TrainingArguments with the suggested hyperparameters\n"," training_args = TrainingArguments(\n"," output_dir=output_dir, # Directory for saving output models and checkpoints.\n"," save_strategy=\"steps\", # Save model checkpoints at regular step intervals.\n"," save_steps=10, # Save model checkpoints every 10 steps.\n"," learning_rate=learning_rate, # Initial learning rate for the optimizer.\n"," per_device_train_batch_size=per_device_train_batch_size, # Batch size per device during training.\n"," per_device_eval_batch_size=8, # Batch size per device during evaluation.\n"," num_train_epochs=num_train_epochs, # Total number of training epochs.\n"," warmup_steps=warmup_steps, # Number of warmup steps for the learning rate scheduler.\n"," evaluation_strategy='steps', # Perform evaluation at regular step intervals.\n"," eval_steps=10, # Perform evaluation every 10 steps.\n"," logging_steps=10,\n"," optim='paged_adamw_8bit', # Specifies the optimizer to use.\n"," lr_scheduler_type='linear', # Type of learning rate scheduler.\n"," gradient_accumulation_steps=1, # Number of steps to accumulate gradients before performing an update.\n"," load_best_model_at_end=True, # Load the best model based on evaluation metric at the end of training.\n"," report_to='wandb', # Disable automatic integrations with external reporting tools.\n"," )\n","\n","\n"," # Initialize the Trainer with early stopping callback inside the objective function\n"," trainer = SFTTrainer(\n"," model=model, # Ensure a function or a mechanism to initialize your model\n"," train_dataset=train_dataset,\n"," eval_dataset=val_dataset,\n"," peft_config=peft_config,\n"," dataset_text_field=\"Instruction\",\n"," tokenizer=tokenizer,\n"," args=training_args,\n"," max_seq_length=4096,\n"," callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],\n"," )\n","\n"," # Train the model and evaluate within the objective function\n"," trainer.train()\n"," eval_result = trainer.evaluate()\n","\n"," # Log the primary metric to WandB\n"," wandb.log({\"eval_loss\": eval_result[\"eval_loss\"]})\n","\n"," # Finish the WandB run for this trial\n"," wandb.finish()\n","\n"," # Return the metric to be optimized\n"," return eval_result[\"eval_loss\"]\n","\n","\n","# Run the optimization\n","study = optuna.create_study(direction='minimize')\n","study.optimize(objective, n_trials=10)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fmdlQTVSHT8e","outputId":"a2935a56-5cad-4dbc-c55c-53b3b5ad1368"},"outputs":[{"name":"stdout","output_type":"stream","text":["Best trial:\n"," Value: 0.8303791284561157\n"," Params: \n"," learning_rate: 0.0003782307395143863\n"," num_train_epochs: 6\n"," per_device_train_batch_size: 16\n"," warmup_steps: 3\n"]}],"source":["# Best trial results\n","print(\"Best trial:\")\n","print(f\" Value: {study.best_trial.value}\")\n","print(\" Params: \")\n","for key, value in study.best_trial.params.items():\n"," print(f\" {key}: {value}\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mKlA_ahVHT8e","outputId":"6365a674-b011-48bb-94ea-7aa9d657d323","colab":{"referenced_widgets":[""]}},"outputs":[{"data":{"text/html":["Tracking run with wandb version 0.16.3"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Run data is saved locally in /home/iot/ITI110/poc-playground/Final project/wandb/run-20240219_161628-5gyifk7s
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Syncing run floating-fish-2 to Weights & Biases (docs)
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View project at https://wandb.ai/szehanz/huggingface"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run at https://wandb.ai/szehanz/huggingface/runs/5gyifk7s"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n","
\n"," [126/126 12:16, Epoch 6/6]\n","
\n"," \n"," \n"," \n"," Step | \n"," Training Loss | \n"," Validation Loss | \n","
\n"," \n"," \n"," \n"," 10 | \n"," 2.715800 | \n"," 1.857712 | \n","
\n"," \n"," 20 | \n"," 1.077300 | \n"," 1.051454 | \n","
\n"," \n"," 30 | \n"," 0.647500 | \n"," 0.913019 | \n","
\n"," \n"," 40 | \n"," 0.547200 | \n"," 0.881412 | \n","
\n"," \n"," 50 | \n"," 0.489900 | \n"," 0.886365 | \n","
\n"," \n"," 60 | \n"," 0.457400 | \n"," 0.855178 | \n","
\n"," \n"," 70 | \n"," 0.428400 | \n"," 0.860198 | \n","
\n"," \n"," 80 | \n"," 0.407200 | \n"," 0.863780 | \n","
\n"," \n"," 90 | \n"," 0.395000 | \n"," 0.834071 | \n","
\n"," \n"," 100 | \n"," 0.372300 | \n"," 0.848378 | \n","
\n"," \n"," 110 | \n"," 0.379500 | \n"," 0.848452 | \n","
\n"," \n"," 120 | \n"," 0.358800 | \n"," 0.857301 | \n","
\n"," \n","
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='0.006 MB of 0.034 MB uploaded\\r'), FloatProgress(value=0.17130191715842674, max=1.…"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","Run history:
eval/loss | █▂▂▁▁▁▁▁▁▁▁▁ |
eval/runtime | ▁▄▄▆▆▆▅█▇▇▆█ |
eval/samples_per_second | █▅▅▃▃▃▄▁▁▂▃▁ |
eval/steps_per_second | █▅▅▃▃▃▄▂▂▂▃▁ |
train/epoch | ▁▁▂▂▂▂▃▃▃▃▄▄▅▅▅▅▆▆▆▆▇▇███ |
train/global_step | ▁▁▂▂▂▂▃▃▃▃▄▄▅▅▅▅▆▆▆▆▇▇███ |
train/learning_rate | █▇▇▆▅▅▄▄▃▂▂▁ |
train/loss | █▃▂▂▁▁▁▁▁▁▁▁ |
train/total_flos | ▁ |
train/train_loss | ▁ |
train/train_runtime | ▁ |
train/train_samples_per_second | ▁ |
train/train_steps_per_second | ▁ |
Run summary:
eval/loss | 0.8573 |
eval/runtime | 5.9051 |
eval/samples_per_second | 7.282 |
eval/steps_per_second | 1.016 |
train/epoch | 6.0 |
train/global_step | 126 |
train/learning_rate | 2e-05 |
train/loss | 0.3588 |
train/total_flos | 1913972332118016.0 |
train/train_loss | 0.67577 |
train/train_runtime | 746.485 |
train/train_samples_per_second | 2.685 |
train/train_steps_per_second | 0.169 |
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[" View run floating-fish-2 at: https://wandb.ai/szehanz/huggingface/runs/5gyifk7s
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["Find logs at: ./wandb/run-20240219_161628-5gyifk7s/logs
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["# Use best hyperparameters from the study\n","best_trial = study.best_trial\n","\n","best_learning_rate = best_trial.params['learning_rate']\n","best_num_train_epochs = best_trial.params['num_train_epochs']\n","best_per_device_train_batch_size = best_trial.params['per_device_train_batch_size']\n","best_warmup_steps = best_trial.params['warmup_steps']\n","\n","\n","# Define TrainingArguments with the best hyperparameters for retraining\n","best_training_args = TrainingArguments(\n"," output_dir=\"best_train_out_dir\",\n"," save_strategy=\"steps\",\n"," save_steps=10,\n"," learning_rate=best_learning_rate,\n"," per_device_train_batch_size=best_per_device_train_batch_size,\n"," per_device_eval_batch_size=8,\n"," num_train_epochs=best_num_train_epochs,\n"," warmup_steps=best_warmup_steps,\n"," evaluation_strategy='steps',\n"," eval_steps=10,\n"," logging_steps=10,\n"," optim='paged_adamw_8bit',\n"," lr_scheduler_type='linear',\n"," gradient_accumulation_steps=1,\n"," load_best_model_at_end=True,\n"," report_to='wandb',\n",")\n","\n","# Reinitialize the Trainer with the best hyperparameters\n","best_trainer = SFTTrainer(\n"," model=model,\n"," train_dataset=train_dataset,\n"," eval_dataset=val_dataset,\n"," peft_config=peft_config,\n"," dataset_text_field=\"Instruction\",\n"," tokenizer=tokenizer,\n"," args=best_training_args,\n"," max_seq_length=4096,\n",")\n","\n","# Retrain the model with the best hyperparameters\n","best_trainer.train()\n","\n","\n","# Save trained model\n","best_trainer.model.save_pretrained(new_model)\n","\n","# Finish the WandB run for this trial\n","wandb.finish()"]},{"cell_type":"markdown","metadata":{"id":"_g0fB7P9s0ol"},"source":["Merging the base model with the trained adapter."]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["aafec7a64d034e05b1aaf17bb153136b","1191c9b140394f1aa3952c1cecda8fed","68107c402ec343ffa40e22171e9fe3e9"]},"id":"QQn30cRtAZ-P","outputId":"6508be7b-0a96-494e-bd33-d35c5c331f52"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"68107c402ec343ffa40e22171e9fe3e9","version_major":2,"version_minor":0},"text/plain":["Loading checkpoint shards: 0%| | 0/2 [00:00, ?it/s]"]},"metadata":{},"output_type":"display_data"}],"source":["# Reload model in FP16 and merge it with LoRA weights\n","model = AutoModelForCausalLM.from_pretrained(\n"," base_model,\n"," low_cpu_mem_usage=True,\n"," return_dict=True,\n"," torch_dtype=torch.float16,\n"," # device_map={\"\": 0},\n",")\n","model = PeftModel.from_pretrained(model, new_model)\n","model = model.merge_and_unload()\n","\n","\n","# Reload tokenizer to save it\n","tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)\n","tokenizer.pad_token = tokenizer.eos_token\n","tokenizer.padding_side = \"right\""]},{"cell_type":"markdown","metadata":{"id":"n4_wCHy_s--5"},"source":["Push the model and tokenizer to the Hugging Face Hub."]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["3202bad4cfeb4061b79b1899b34c72fe","adb2ab52a0b349a6acf355e8e2f86195","4757fe0198c8457691b53c53968b2c57","2f57f07de87446f582fcd4a95a31664a","2d123d7e3900443a808dbf6a7952b726","1bc2e343ca5f467b90153d0d38e89394","80e67743398e41d683777f59123bea3e","a664ba31bd30447e9140f9212b6e6c38","3b2b77dee0e14d99b92a871fa1a287e7","535f980e08c34b4493d495d34f9bc40f","590911afbac44647b85b8d7097e31140","aeb90604de1e4006b17073134a21eef7","95886f8c0a904f52aedceef08d7a271c","6f9714c4bcda4f8d9592239fbe2f9b8f","179235675f0e4193b3e4aa2d2358310e","b319e2cc538f4cf88901bb5bdc47d3cf"]},"id":"x-xPb-_qB0dz","outputId":"c6eb10d5-6b16-46f8-d147-12355811ec32"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"aeb90604de1e4006b17073134a21eef7","version_major":2,"version_minor":0},"text/plain":["model-00001-of-00003.safetensors: 0%| | 0.00/4.94G [00:00, ?B/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"95886f8c0a904f52aedceef08d7a271c","version_major":2,"version_minor":0},"text/plain":["Upload 3 LFS files: 0%| | 0/3 [00:00, ?it/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"6f9714c4bcda4f8d9592239fbe2f9b8f","version_major":2,"version_minor":0},"text/plain":["model-00003-of-00003.safetensors: 0%| | 0.00/3.59G [00:00, ?B/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"179235675f0e4193b3e4aa2d2358310e","version_major":2,"version_minor":0},"text/plain":["model-00002-of-00003.safetensors: 0%| | 0.00/4.95G [00:00, ?B/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"b319e2cc538f4cf88901bb5bdc47d3cf","version_major":2,"version_minor":0},"text/plain":["tokenizer.model: 0%| | 0.00/500k [00:00, ?B/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["CommitInfo(commit_url='https://huggingface.co/ssoh/llama-2-7b-mcq_2/commit/15e8c4001435adf13ca05fb2511801305715e372', commit_message='Upload tokenizer', commit_description='', oid='15e8c4001435adf13ca05fb2511801305715e372', pr_url=None, pr_revision=None, pr_num=None)"]},"execution_count":12,"metadata":{},"output_type":"execute_result"}],"source":["model.push_to_hub(new_model, use_temp_dir=False)\n","tokenizer.push_to_hub(new_model, use_temp_dir=False)"]},{"cell_type":"markdown","metadata":{"id":"hAS2DuJuC7xR"},"source":["---"]}],"metadata":{"colab":{"provenance":[{"file_id":"1p68M5E5fZ7kSa7nA-e-20489nuFSXVp2","timestamp":1706370554565},{"file_id":"119-Y6eV94vuFqWLh8t8NBB-Uf54eCl3i","timestamp":1700232595435},{"file_id":"1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd","timestamp":1699194238655}]},"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.0"},"widgets":{"application/vnd.jupyter.widget-state+json":{"01ff6ffe93d64b2f8d5dd55b9e3cfcc6":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0786fc506a7640a287016991f57d3768":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_0ba6b1d30c4642648fcaa57af3c52f49","placeholder":"","style":"IPY_MODEL_23176fa0130348c5bc1b0deb591709f3","value":"model.safetensors.index.json: 100%"}},"08400a144d3c497a94ae4d84e72a1067":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0af30e36f2524c1084c1237948f3b18e":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_963973c1e970410cb2ba97e9fb4ef511","placeholder":"","style":"IPY_MODEL_ca8d07b9b454471e883d43e03b475a9f","value":" 26.8k/26.8k [00:00<00:00, 389kB/s]"}},"0ba4f20507af472a8b1504de483f7800":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_187745df1f154e7da09a0c646a22cebb","IPY_MODEL_20cc750b1bde4efdb3c3a5b5321222b4","IPY_MODEL_77c0d63f6cd6494daf7e94cfe0397e45"],"layout":"IPY_MODEL_01ff6ffe93d64b2f8d5dd55b9e3cfcc6"}},"0ba6b1d30c4642648fcaa57af3c52f49":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0cda6495ef4b4c9ab3eeff2392d89163":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"11b88a389a4042b5ad5ba06f51ac22e0":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_2cb9cfbde1e0483c97a2c531e0034adf","placeholder":"","style":"IPY_MODEL_de756c426cf0492bb122a45b94d4bbe7","value":"
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "}},"14d0ff6e07a148c0b65224af86af6b95":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"187745df1f154e7da09a0c646a22cebb":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_638517f3c94445c7b610b84744859ef8","placeholder":"","style":"IPY_MODEL_5206f9fc25234586b735fc9c65e6b19a","value":"generation_config.json: 100%"}},"19b8b7692cfd46eca5abb50ac2854262":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"19d3adedf1a245f69a2498b1838f6415":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_31ffba7793b944cd80bec0fb6ac2fbbe","IPY_MODEL_1ae848be349a41239a7ba6efadc82edf","IPY_MODEL_9a33d92ad0604eff9ac56944586facbb"],"layout":"IPY_MODEL_293d425206684064b0572e990a815cee"}},"1ae848be349a41239a7ba6efadc82edf":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_8ae8a9d03adc476a8dd64f09e194907d","max":2,"min":0,"orientation":"horizontal","style":"IPY_MODEL_aeb94dbf3f8a4b43bb07c833af3b98c9","value":2}},"1c6e5dd4ca3446ec8cf8a03b85ad57dc":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_0786fc506a7640a287016991f57d3768","IPY_MODEL_3af05a188f40469dbd52fda55c7a9e22","IPY_MODEL_0af30e36f2524c1084c1237948f3b18e"],"layout":"IPY_MODEL_dfe1c2648a564676bfe1e09bda61d439"}},"1ea12323b1244c768a17a6ed5420f854":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"1f9e8ddb08814b2db7761478eb9069f5":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_7982d1d315964d138f31643db445b48a","max":614,"min":0,"orientation":"horizontal","style":"IPY_MODEL_67346bc716384552a69d1afdc844db00","value":614}},"20cc750b1bde4efdb3c3a5b5321222b4":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_a199f20edde447829b17804b17af2fe5","max":188,"min":0,"orientation":"horizontal","style":"IPY_MODEL_447f608108364159ab7ed546ad02559a","value":188}},"21556be54ed34b15b909bf8e7b8fd93a":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_b8113970ea7245e9890221d4e4cf5e8e","placeholder":"","style":"IPY_MODEL_d3224d16458249a3bfd29253c2d6a86f","value":"\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.