Spaces:
Sleeping
Sleeping
Create app_legacy.py
Browse files- app_legacy.py +452 -0
app_legacy.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import io
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
st.set_page_config(page_title="RecycleRight Budapest", page_icon="♻️", layout="wide")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# ============== VISION AGENT ==============
|
| 14 |
+
class VisionAgent:
|
| 15 |
+
def __init__(self):
|
| 16 |
+
self.token = os.getenv("HF_TOKEN")
|
| 17 |
+
if not self.token and "HF_TOKEN" in st.secrets:
|
| 18 |
+
self.token = st.secrets["HF_TOKEN"]
|
| 19 |
+
|
| 20 |
+
# Use the standard API URL (Router URL can be finicky with these models)
|
| 21 |
+
self.base_url = "https://api-inference.huggingface.co/models"
|
| 22 |
+
|
| 23 |
+
# 🔄 CHANGED MODELS to ones that are still active on Free Tier
|
| 24 |
+
self.classifier_model = "microsoft/resnet-50"
|
| 25 |
+
self.captioner_model = "nlpconnect/vit-gpt2-image-captioning"
|
| 26 |
+
|
| 27 |
+
def query_api(self, model_id, image_bytes):
|
| 28 |
+
headers = {"Authorization": f"Bearer {self.token}"}
|
| 29 |
+
|
| 30 |
+
# Retry logic
|
| 31 |
+
max_retries = 3
|
| 32 |
+
for attempt in range(max_retries):
|
| 33 |
+
try:
|
| 34 |
+
response = requests.post(
|
| 35 |
+
f"{self.base_url}/{model_id}",
|
| 36 |
+
headers=headers,
|
| 37 |
+
data=image_bytes,
|
| 38 |
+
timeout=20 # 20s is enough
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# SUCCESS
|
| 42 |
+
if response.status_code == 200:
|
| 43 |
+
return response
|
| 44 |
+
|
| 45 |
+
# LOADING (Cold Start)
|
| 46 |
+
elif response.status_code == 503:
|
| 47 |
+
error_data = response.json()
|
| 48 |
+
wait_time = error_data.get("estimated_time", 15)
|
| 49 |
+
st.toast(f"⏳ Waking up {model_id}... {wait_time:.0f}s", icon="💤")
|
| 50 |
+
time.sleep(wait_time)
|
| 51 |
+
continue
|
| 52 |
+
|
| 53 |
+
# If 410/404/500 -> Fail immediately, don't retry
|
| 54 |
+
else:
|
| 55 |
+
print(f"Error {response.status_code}: {response.text}")
|
| 56 |
+
return None
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Connection Error: {e}")
|
| 60 |
+
return None
|
| 61 |
+
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
+
def process(self, image, filename=""):
|
| 65 |
+
# Image Prep
|
| 66 |
+
if image.mode != 'RGB': image = image.convert('RGB')
|
| 67 |
+
buf = io.BytesIO()
|
| 68 |
+
image.save(buf, format='JPEG')
|
| 69 |
+
image_bytes = buf.getvalue()
|
| 70 |
+
|
| 71 |
+
if not self.token:
|
| 72 |
+
st.error("❌ HF_TOKEN is missing.")
|
| 73 |
+
return self.fallback_detection(filename)
|
| 74 |
+
|
| 75 |
+
detected_keywords = []
|
| 76 |
+
display_description = ""
|
| 77 |
+
|
| 78 |
+
# 1. Classifier (ResNet)
|
| 79 |
+
st.toast(f"🤖 Identifying object...", icon="🔍")
|
| 80 |
+
resp_class = self.query_api(self.classifier_model, image_bytes)
|
| 81 |
+
if resp_class and resp_class.status_code == 200:
|
| 82 |
+
results = resp_class.json()
|
| 83 |
+
if isinstance(results, list):
|
| 84 |
+
# ResNet returns [{'label': 'water bottle', 'score': 0.9}]
|
| 85 |
+
top_labels = [item.get('label', '') for item in results[:3]]
|
| 86 |
+
detected_keywords.extend(top_labels)
|
| 87 |
+
st.success(f"🏷️ Detected: {', '.join(top_labels)}")
|
| 88 |
+
|
| 89 |
+
# 2. Captioner (ViT-GPT2)
|
| 90 |
+
st.toast(f"👁️ Analyzing context...", icon="📝")
|
| 91 |
+
resp_cap = self.query_api(self.captioner_model, image_bytes)
|
| 92 |
+
if resp_cap and resp_cap.status_code == 200:
|
| 93 |
+
results = resp_cap.json()
|
| 94 |
+
# Format: [{'generated_text': 'a woman holding a bottle'}]
|
| 95 |
+
if isinstance(results, list) and len(results) > 0 and 'generated_text' in results[0]:
|
| 96 |
+
caption = results[0]['generated_text']
|
| 97 |
+
display_description = caption
|
| 98 |
+
detected_keywords.append(caption)
|
| 99 |
+
|
| 100 |
+
# Check if we got ANYTHING
|
| 101 |
+
combined_text = " ".join(detected_keywords).lower()
|
| 102 |
+
|
| 103 |
+
if not combined_text.strip():
|
| 104 |
+
st.warning("⚠️ AI models unavailable. Switching to filename detection.")
|
| 105 |
+
return self.fallback_detection(filename)
|
| 106 |
+
|
| 107 |
+
return self.analyze(combined_text, display_description)
|
| 108 |
+
|
| 109 |
+
def analyze(self, text, display_desc=""):
|
| 110 |
+
# ... (Keep your existing analyze logic exactly as it is) ...
|
| 111 |
+
# COPY PASTE YOUR EXISTING ANALYZE FUNCTION HERE
|
| 112 |
+
result = {
|
| 113 |
+
"description": display_desc if display_desc else text,
|
| 114 |
+
"items": [],
|
| 115 |
+
"materials": [],
|
| 116 |
+
"condition": "clean",
|
| 117 |
+
"needs_separation": False
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
# 1. Plastic
|
| 121 |
+
if any(w in text for w in ["plastic", "bottle", "poly", "water bottle"]):
|
| 122 |
+
if "glass" not in text and "wine" not in text:
|
| 123 |
+
result["materials"].append("plastic")
|
| 124 |
+
|
| 125 |
+
# 2. Glass
|
| 126 |
+
if any(w in text for w in ["glass", "wine", "beer bottle", "jar"]):
|
| 127 |
+
result["materials"].append("glass")
|
| 128 |
+
|
| 129 |
+
# 3. Metal / Aluminum
|
| 130 |
+
if any(w in text for w in ["can", "aluminum", "tin", "soda", "beer", "coke"]):
|
| 131 |
+
if "trash can" not in text:
|
| 132 |
+
result["materials"].append("metal")
|
| 133 |
+
result["items"].append("can")
|
| 134 |
+
|
| 135 |
+
# 4. Paper / Cardboard
|
| 136 |
+
if any(w in text for w in ["cardboard", "box", "carton", "pizza"]):
|
| 137 |
+
result["materials"].append("cardboard")
|
| 138 |
+
if any(w in text for w in ["paper", "newspaper", "magazine"]):
|
| 139 |
+
result["materials"].append("paper")
|
| 140 |
+
|
| 141 |
+
# 5. Special Items
|
| 142 |
+
if "pizza" in text:
|
| 143 |
+
result["items"].append("pizza")
|
| 144 |
+
result["condition"] = "dirty"
|
| 145 |
+
|
| 146 |
+
if any(w in text for w in ["bottle", "can", "soda", "beer", "coke"]):
|
| 147 |
+
result["items"].append("deposit")
|
| 148 |
+
result["items"].append("bottle")
|
| 149 |
+
|
| 150 |
+
if "coffee" in text or "cup" in text:
|
| 151 |
+
result["items"].append("cup")
|
| 152 |
+
result["items"].append("takeaway")
|
| 153 |
+
|
| 154 |
+
if any(w in text for w in ["dirty", "trash", "garbage", "waste", "rotten", "greasy"]):
|
| 155 |
+
result["condition"] = "dirty"
|
| 156 |
+
|
| 157 |
+
result["items"] = list(set(result["items"]))
|
| 158 |
+
result["materials"] = list(set(result["materials"]))
|
| 159 |
+
|
| 160 |
+
if not result["materials"] and not result["items"]:
|
| 161 |
+
result["materials"].append("unknown")
|
| 162 |
+
|
| 163 |
+
return result
|
| 164 |
+
|
| 165 |
+
def fallback_detection(self, filename):
|
| 166 |
+
st.warning("using filename detection")
|
| 167 |
+
return self.analyze(filename.lower() if filename else "")
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
#def fallback_detection(self, filename):
|
| 171 |
+
# st.warning(f"⚠️ Using filename detection for: {filename}")
|
| 172 |
+
# # Simple logic for fallback
|
| 173 |
+
# fname = filename.lower() if filename else ""
|
| 174 |
+
# result = {"description": fname, "items": [], "materials": [], "condition": "clean", "needs_separation": False}
|
| 175 |
+
#
|
| 176 |
+
# if "bottle" in fname: result["items"].append("bottle"); result["materials"].append("plastic")
|
| 177 |
+
# elif "can" in fname: result["items"].append("can"); result["materials"].append("metal")
|
| 178 |
+
# elif "pizza" in fname: result["items"].append("pizza"); result["materials"].append("cardboard"); result["condition"]="dirty"
|
| 179 |
+
# else: result["materials"].append("unknown")
|
| 180 |
+
# return result
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# ============== RULES AGENT ==============
|
| 184 |
+
class RulesAgent:
|
| 185 |
+
def __init__(self):
|
| 186 |
+
self.rules = {
|
| 187 |
+
"plastic": {"bin": "SÁRGA", "emoji": "🟡", "label": "Műanyag és Fém"},
|
| 188 |
+
"metal": {"bin": "SÁRGA", "emoji": "🟡", "label": "Műanyag és Fém"},
|
| 189 |
+
"paper": {"bin": "KÉK", "emoji": "🔵", "label": "Papír"},
|
| 190 |
+
"cardboard": {"bin": "KÉK", "emoji": "🔵", "label": "Papír"},
|
| 191 |
+
"glass": {"bin": "GYŰJTŐPONT", "emoji": "🟢", "label": "Üveg"},
|
| 192 |
+
"hazardous": {"bin": "KÜLÖNLEGES", "emoji": "⚠️", "label": "Veszélyes hulladék"}
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
self.special_items = {
|
| 196 |
+
"deposit": {"bin": "REpont", "emoji": "♻️", "reason": "Return for 50 Ft refund!"},
|
| 197 |
+
"takeaway": {"bin": "FEKETE", "emoji": "⚫", "reason": "Plastic lining prevents recycling"},
|
| 198 |
+
"pizza": {"bin": "FEKETE", "emoji": "⚫", "reason": "Grease contamination"},
|
| 199 |
+
"batteries": {"bin": "ELEMGYŰJTŐ", "emoji": "🔋", "reason": "Toxic materials"}
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
def process(self, vision_result):
|
| 203 |
+
items = vision_result.get("items", [])
|
| 204 |
+
materials = vision_result.get("materials", [])
|
| 205 |
+
condition = vision_result.get("condition", "clean")
|
| 206 |
+
|
| 207 |
+
result = {"bins_needed": [], "steps": [], "warnings": []}
|
| 208 |
+
step = 1
|
| 209 |
+
handled = set()
|
| 210 |
+
|
| 211 |
+
# Separation warning
|
| 212 |
+
if vision_result.get("needs_separation"):
|
| 213 |
+
result["steps"].append(f"{step}. 🔄 **Separate different materials first**")
|
| 214 |
+
step += 1
|
| 215 |
+
|
| 216 |
+
# Special items
|
| 217 |
+
for item in items:
|
| 218 |
+
if item in self.special_items:
|
| 219 |
+
special = self.special_items[item]
|
| 220 |
+
result["steps"].append(f"{step}. {special['emoji']} **{item.title()} → {special['bin']}**")
|
| 221 |
+
result["bins_needed"].append({"bin": special["bin"], "emoji": special["emoji"], "label": special["bin"]})
|
| 222 |
+
result["warnings"].append(f"💡 {special['reason']}")
|
| 223 |
+
step += 1
|
| 224 |
+
|
| 225 |
+
# Mark materials as handled
|
| 226 |
+
if item == "deposit":
|
| 227 |
+
handled.update(["plastic", "metal", "glass"])
|
| 228 |
+
elif item == "takeaway":
|
| 229 |
+
handled.add("paper")
|
| 230 |
+
|
| 231 |
+
# Regular materials
|
| 232 |
+
for mat in materials:
|
| 233 |
+
if mat in handled:
|
| 234 |
+
continue
|
| 235 |
+
|
| 236 |
+
if mat in self.rules:
|
| 237 |
+
rule = self.rules[mat]
|
| 238 |
+
|
| 239 |
+
# Dirty paper/cardboard
|
| 240 |
+
if condition == "dirty" and mat in ["paper", "cardboard"]:
|
| 241 |
+
result["steps"].append(f"{step}. ⚫ **Dirty {mat} → FEKETE**")
|
| 242 |
+
result["warnings"].append(f"⚠️ Contaminated {mat} cannot be recycled!")
|
| 243 |
+
else:
|
| 244 |
+
result["steps"].append(f"{step}. {rule['emoji']} **{mat.title()} → {rule['bin']}**")
|
| 245 |
+
result["bins_needed"].append(rule)
|
| 246 |
+
|
| 247 |
+
step += 1
|
| 248 |
+
|
| 249 |
+
# Remove duplicate bins
|
| 250 |
+
seen = set()
|
| 251 |
+
unique_bins = []
|
| 252 |
+
for bin_info in result["bins_needed"]:
|
| 253 |
+
if bin_info["bin"] not in seen:
|
| 254 |
+
unique_bins.append(bin_info)
|
| 255 |
+
seen.add(bin_info["bin"])
|
| 256 |
+
result["bins_needed"] = unique_bins
|
| 257 |
+
|
| 258 |
+
return result
|
| 259 |
+
|
| 260 |
+
# ============== RECOMMENDATION AGENT ==============
|
| 261 |
+
class RecommendationAgent:
|
| 262 |
+
def __init__(self):
|
| 263 |
+
self.co2_map = {
|
| 264 |
+
"plastic": 2.5,
|
| 265 |
+
"metal": 8.1,
|
| 266 |
+
"paper": 3.9,
|
| 267 |
+
"cardboard": 3.9,
|
| 268 |
+
"glass": 0.5
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
self.tips = {
|
| 272 |
+
"plastic": "💡 Crush bottles to save 70% truck space!",
|
| 273 |
+
"metal": "💡 Aluminum recycles infinitely without quality loss!",
|
| 274 |
+
"paper": "💡 Recycling 1 ton saves 17 trees!",
|
| 275 |
+
"glass": "💡 Glass recycles endlessly - no quality degradation!"
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
self.locations = {
|
| 279 |
+
"REpont": ["📍 Tesco Árkád Shopping Center", "📍 Spar Westend", "📍 Auchan Budaörs"],
|
| 280 |
+
"GYŰJTŐPONT": ["📍 Glass: Major intersections", "📍 Map: fkf.hu/hulladekgyujto-szigetek"],
|
| 281 |
+
"ELEMGYŰJTŐ": ["📍 Media Markt", "📍 DM drugstores", "📍 Tesco Customer Service"]
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
def process(self, vision_result, rules_result):
|
| 285 |
+
materials = vision_result.get("materials", [])
|
| 286 |
+
items = vision_result.get("items", [])
|
| 287 |
+
|
| 288 |
+
# Calculate CO2 impact
|
| 289 |
+
co2 = sum(self.co2_map.get(m, 0) * 0.2 for m in materials)
|
| 290 |
+
|
| 291 |
+
impact_msg = f"♻️ Saves ~**{co2:.1f} kg CO₂**"
|
| 292 |
+
if co2 > 1:
|
| 293 |
+
car_km = co2 * 4.6
|
| 294 |
+
impact_msg += f"\n🚗 Equivalent to {car_km:.1f} km car travel!"
|
| 295 |
+
|
| 296 |
+
# Generate tips
|
| 297 |
+
tips = [self.tips[m] for m in materials if m in self.tips]
|
| 298 |
+
if "deposit" in items:
|
| 299 |
+
tips.append("💰 Each bottle/can = 50 Ft refund!")
|
| 300 |
+
|
| 301 |
+
# Find locations
|
| 302 |
+
locations = []
|
| 303 |
+
if "deposit" in items:
|
| 304 |
+
locations = self.locations["REpont"]
|
| 305 |
+
elif "batteries" in items:
|
| 306 |
+
locations = self.locations["ELEMGYŰJTŐ"]
|
| 307 |
+
elif "glass" in materials:
|
| 308 |
+
locations = self.locations["GYŰJTŐPONT"]
|
| 309 |
+
|
| 310 |
+
# Fun facts
|
| 311 |
+
facts = [
|
| 312 |
+
"🎯 Budapest aims for 65% recycling by 2035!",
|
| 313 |
+
"📊 Average Hungarian produces 385 kg waste/year",
|
| 314 |
+
"🏆 Proper sorting reduces costs by 40%!",
|
| 315 |
+
"🌱 Recycling 1 ton plastic saves 5,774 kWh energy"
|
| 316 |
+
]
|
| 317 |
+
|
| 318 |
+
return {
|
| 319 |
+
"impact": impact_msg,
|
| 320 |
+
"co2_kg": co2,
|
| 321 |
+
"tips": tips,
|
| 322 |
+
"locations": locations,
|
| 323 |
+
"fun_fact": random.choice(facts)
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
# ============== MAIN APP ==============
|
| 327 |
+
@st.cache_resource
|
| 328 |
+
def load_agents():
|
| 329 |
+
return VisionAgent(), RulesAgent(), RecommendationAgent()
|
| 330 |
+
|
| 331 |
+
def main():
|
| 332 |
+
st.title("♻️ RecycleRight Budapest")
|
| 333 |
+
st.markdown("**Multi-Agent AI Recycling Assistant**")
|
| 334 |
+
|
| 335 |
+
vision, rules, recommender = load_agents()
|
| 336 |
+
|
| 337 |
+
with st.sidebar:
|
| 338 |
+
st.markdown("## 🗑️ Budapest Bins")
|
| 339 |
+
bins = [
|
| 340 |
+
("🟡 SÁRGA", "Plastic & Metal"),
|
| 341 |
+
("🔵 KÉK", "Paper & Cardboard"),
|
| 342 |
+
("⚫ FEKETE", "General Waste"),
|
| 343 |
+
("🟢 GYŰJTŐPONT", "Glass (Collection Points)"),
|
| 344 |
+
("♻️ REpont", "Deposit Returns (50 Ft)")
|
| 345 |
+
]
|
| 346 |
+
for emoji_bin, desc in bins:
|
| 347 |
+
st.markdown(f"**{emoji_bin}** - {desc}")
|
| 348 |
+
|
| 349 |
+
st.markdown("---")
|
| 350 |
+
st.markdown("### 🤖 Agent Status")
|
| 351 |
+
st.success("✅ Vision Agent ")
|
| 352 |
+
st.success("✅ Rules Agent (Budapest FKF)")
|
| 353 |
+
st.success("✅ Recommendation Agent")
|
| 354 |
+
|
| 355 |
+
tab1, tab2 = st.tabs(["📸 Analyze", "🎮 Examples"])
|
| 356 |
+
|
| 357 |
+
with tab1:
|
| 358 |
+
st.info("💡 **Multi-Model AI:** Tries different vision models for reliability!")
|
| 359 |
+
|
| 360 |
+
uploaded = st.file_uploader("📁 Upload image", type=['jpg','png','jpeg'])
|
| 361 |
+
|
| 362 |
+
if uploaded:
|
| 363 |
+
img = Image.open(uploaded)
|
| 364 |
+
st.image(img, caption=f"Uploaded: {uploaded.name}", use_column_width=True)
|
| 365 |
+
|
| 366 |
+
if st.button("🔍 **ANALYZE**", type="primary", use_container_width=True):
|
| 367 |
+
with st.spinner("🤖 Multi-agent processing..."):
|
| 368 |
+
# Vision analysis
|
| 369 |
+
v_result = vision.process(img, filename=uploaded.name)
|
| 370 |
+
|
| 371 |
+
# Rules application
|
| 372 |
+
r_result = rules.process(v_result)
|
| 373 |
+
|
| 374 |
+
# Recommendations
|
| 375 |
+
rec = recommender.process(v_result, r_result)
|
| 376 |
+
|
| 377 |
+
st.balloons()
|
| 378 |
+
st.success("✅ **Analysis Complete!**")
|
| 379 |
+
|
| 380 |
+
# Display results
|
| 381 |
+
col1, col2 = st.columns([2, 1])
|
| 382 |
+
|
| 383 |
+
with col1:
|
| 384 |
+
st.markdown("### 👁️ Detection")
|
| 385 |
+
st.write(f"**Description:** {v_result['description']}")
|
| 386 |
+
st.write(f"**Items:** {', '.join(v_result['items']) if v_result['items'] else 'None detected'}")
|
| 387 |
+
st.write(f"**Materials:** {', '.join(v_result['materials']) if v_result['materials'] else 'None detected'}")
|
| 388 |
+
st.write(f"**Condition:** {v_result['condition']}")
|
| 389 |
+
|
| 390 |
+
st.markdown("### 📋 Disposal Instructions")
|
| 391 |
+
if r_result['steps']:
|
| 392 |
+
for step in r_result['steps']:
|
| 393 |
+
st.markdown(step)
|
| 394 |
+
else:
|
| 395 |
+
st.info("No specific instructions - general waste disposal")
|
| 396 |
+
|
| 397 |
+
for warning in r_result['warnings']:
|
| 398 |
+
st.warning(warning)
|
| 399 |
+
|
| 400 |
+
with col2:
|
| 401 |
+
st.markdown("### 🗑️ Bins Needed")
|
| 402 |
+
if r_result['bins_needed']:
|
| 403 |
+
for bin_info in r_result['bins_needed']:
|
| 404 |
+
st.metric(bin_info.get('label', bin_info['bin']), f"{bin_info['emoji']} {bin_info['bin']}")
|
| 405 |
+
else:
|
| 406 |
+
st.info("No specific bin required")
|
| 407 |
+
|
| 408 |
+
st.markdown("### 🌍 Environmental Impact")
|
| 409 |
+
st.info(rec['impact'])
|
| 410 |
+
|
| 411 |
+
if rec['locations']:
|
| 412 |
+
st.markdown("### 📍 Where to Go")
|
| 413 |
+
for loc in rec['locations']:
|
| 414 |
+
st.markdown(loc)
|
| 415 |
+
|
| 416 |
+
# Tips
|
| 417 |
+
if rec['tips']:
|
| 418 |
+
st.markdown("### 💡 Pro Tips")
|
| 419 |
+
cols = st.columns(len(rec['tips']))
|
| 420 |
+
for i, tip in enumerate(rec['tips']):
|
| 421 |
+
with cols[i]:
|
| 422 |
+
st.info(tip)
|
| 423 |
+
|
| 424 |
+
st.markdown(f"**Did you know?** {rec['fun_fact']}")
|
| 425 |
+
|
| 426 |
+
with tab2:
|
| 427 |
+
st.markdown("### 🎮 Quick Test Examples")
|
| 428 |
+
|
| 429 |
+
examples = [
|
| 430 |
+
("🥤 Plastic Bottle", {"items": ["bottle", "deposit"], "materials": ["plastic"], "condition": "clean", "needs_separation": False, "description": "plastic water bottle"}),
|
| 431 |
+
("☕ Coffee Cup", {"items": ["cup", "takeaway"], "materials": ["paper"], "condition": "clean", "needs_separation": True, "description": "disposable coffee cup"}),
|
| 432 |
+
("🍕 Pizza Box", {"items": ["pizza", "box"], "materials": ["cardboard"], "condition": "dirty", "needs_separation": False, "description": "greasy pizza box"}),
|
| 433 |
+
("🍷 Wine Bottle", {"items": ["bottle"], "materials": ["glass"], "condition": "clean", "needs_separation": False, "description": "glass wine bottle"}),
|
| 434 |
+
("🥫 Metal Can", {"items": ["can", "deposit"], "materials": ["metal"], "condition": "clean", "needs_separation": False, "description": "aluminum soda can"}),
|
| 435 |
+
("🔋 Batteries", {"items": ["batteries"], "materials": ["hazardous"], "condition": "used", "needs_separation": False, "description": "AA batteries"})
|
| 436 |
+
]
|
| 437 |
+
|
| 438 |
+
cols = st.columns(3)
|
| 439 |
+
for i, (name, data) in enumerate(examples):
|
| 440 |
+
with cols[i % 3]:
|
| 441 |
+
if st.button(name, use_container_width=True):
|
| 442 |
+
r = rules.process(data)
|
| 443 |
+
rec = recommender.process(data, r)
|
| 444 |
+
|
| 445 |
+
st.markdown(f"#### {name}")
|
| 446 |
+
st.write(f"**Items:** {', '.join(data['items'])}")
|
| 447 |
+
for step in r['steps']:
|
| 448 |
+
st.markdown(step)
|
| 449 |
+
st.info(rec['impact'])
|
| 450 |
+
|
| 451 |
+
if __name__ == "__main__":
|
| 452 |
+
main()
|