File size: 18,487 Bytes
7c3768c
 
 
 
 
 
 
 
4380ba4
7c3768c
4380ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c3768c
 
4380ba4
 
 
 
 
 
 
 
 
 
 
 
 
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
 
7c3768c
 
 
 
 
 
4380ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
 
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
 
 
7c3768c
 
 
 
 
 
dc05443
064e71c
 
7c3768c
4380ba4
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
7c3768c
 
 
 
 
 
4380ba4
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
7c3768c
 
 
4380ba4
7c3768c
 
4380ba4
 
7c3768c
4380ba4
 
7c3768c
 
4380ba4
 
7c3768c
 
4380ba4
 
7c3768c
 
4380ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c3768c
4380ba4
 
7c3768c
 
 
 
 
 
4380ba4
 
 
7c3768c
 
4380ba4
7c3768c
4380ba4
 
7c3768c
dc05443
4380ba4
7c3768c
 
 
4380ba4
7c3768c
 
4380ba4
7c3768c
4380ba4
 
 
 
 
 
 
 
 
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380ba4
7c3768c
 
 
 
 
 
 
 
 
 
 
 
1c4c601
 
 
7c3768c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go


# Plot Function Definitions

def create_gender_pie_chart(df):
    """Creates a bar chart for Gender Distribution."""
    gender_counts = df['gender'].value_counts().reset_index()
    gender_counts.columns = ['Gender', 'Count']
    fig_gender = px.pie(
        gender_counts,
        names='Gender',
        values='Count',
        hover_data=['Count'],
        hole=0.3
    )
    st.plotly_chart(fig_gender, use_container_width=True)


def create_race_pie_chart(df):
    race_counts = df['race'].value_counts().reset_index()
    race_counts.columns = ['Race Type', 'Count']
    fig_race = px.pie(
            race_counts,
            names='Race Type',
            values='Count',
            hover_data=['Count'],
            hole=0.3
        )
    st.plotly_chart(fig_race, use_container_width=True)
    
def create_insurance_pie_chart(df):
    insurance_counts = df['insurance'].value_counts().reset_index()
    insurance_counts.columns = ['Insurance Type', 'Count']
    fig_insurance = px.pie(
            insurance_counts,
            names='Insurance Type',
            values='Count',
            hover_data=['Count'],
            hole=0.3
        )
    st.plotly_chart(fig_insurance, use_container_width=True)

def create_mortality_pie_chart(df):
    #plt.figure(figsize=(6,3), facecolor='white')
    total_admissions = df.shape[0]
    labels = ['Survived', 'Died']
    sizes = [total_admissions - df['hospital_expire_flag'].sum(),
            df['hospital_expire_flag'].sum()]
    colors = ['#66b3ff', '#ff6666']
    explode = (0.1, 0)

    plt.pie(sizes, explode=explode, labels=labels, colors=colors,
            autopct='%1.1f%%', startangle=140,  textprops={'fontsize': 14})
    plt.axis('equal') 
    plt.tight_layout()
    st.pyplot(plt.gcf())
    
def create_admission_type_bar_chart(df):
    admission_counts = df['admission_type'].value_counts().reset_index()
    admission_counts.columns = ['Admission Type', 'Count']
    fig_admission = px.bar(
        admission_counts,
        y='Admission Type',
        x='Count',
        color='Admission Type',
        labels={'Count': 'Number of Admissions', 'Admission Type': 'Admission Type'},
        hover_data=['Count']
    )
    st.plotly_chart(fig_admission, use_container_width=True)

def create_time_series_heatmap(df):
    """Creates an admissions over time heatmap."""
    month_order = ['January', 'February', 'March', 'April', 'May', 'June',
                   'July', 'August', 'September', 'October', 'November', 'December']
    df['admission_month'] = pd.Categorical(df['admission_month'], categories=month_order, ordered=True)

    heatmap_df = df.groupby(['admission_year', 'admission_month']).size().reset_index(name='counts')

    fig = px.density_heatmap(
        heatmap_df,
        x='admission_month',
        y='admission_year',
        z='counts',
        histfunc='sum',
        labels={'counts': 'Number of Admissions', 'admission_month': 'Admission Month', 'admission_year': 'Admission Year'},
        color_continuous_scale='rdbu'
    )
    fig.update_xaxes(categoryorder='array', categoryarray=month_order)
    fig.update_layout(yaxis=dict(autorange='reversed'))
    fig.update_traces(colorbar=dict(title='Admissions'))
    st.plotly_chart(fig, use_container_width=True)






# def create_stacked_bar_admission_race(df):
#     """Creates a stacked bar chart for Admission Types by Race."""
#     admission_race = df.groupby(['race', 'admission_type']).size().unstack(fill_value=0)
#     admission_race_percent = admission_race.div(admission_race.sum(axis=1), axis=0) * 100

#     admission_race_percent.plot(kind='bar', stacked=True, figsize=(8, 6), colormap='tab20')
#     plt.xlabel("Race")
#     plt.ylabel("Percentage of Admission Types")
#     plt.legend(title='Admission Type', bbox_to_anchor=(1.05, 1), loc='upper left')
#     plt.tight_layout()
#     st.pyplot(plt.gcf())

# def create_los_by_race(df):
#     """Creates a box plot for Length of Stay by Race."""
#     fig, ax = plt.subplots(figsize=(6, 4))
#     sns.boxplot(data=df, x='race', y='los', palette='Pastel1', ax=ax)
#     ax.set_xlabel("Race")
#     ax.set_ylabel("Length of Stay (Days)")
#     ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
#     plt.tight_layout()
#     st.pyplot(fig)

# def create_correlation_heatmap(df):
#     """Creates a correlation heatmap for numerical features."""
#     numerical_features = df[['anchor_age', 'los']]
#     corr_matrix = numerical_features.corr()

#     fig, ax = plt.subplots(figsize=(3.5, 3))
#     sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", ax=ax)
#     plt.tight_layout()
#     st.pyplot(fig)


def create_age_distribution_by_gender(df):
    plt.figure(figsize=(12, 8))
    sns.histplot(data=df, x='anchor_age', bins=30,
                kde=True, palette='bright', hue='gender')
    plt.xlabel('Age', fontsize=16)
    plt.ylabel('Number of Admissions', fontsize=16)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.tight_layout()
    st.pyplot(plt.gcf())


def create_age_distribution_by_admission_type(df):
    plt.figure(figsize=(12, 8))
    sns.boxenplot(data=df, x='admission_type',
                y='anchor_age', palette='Set3')
    plt.xlabel('Admission Type', fontsize=16)
    plt.ylabel('Age', fontsize=16)
    plt.xticks(fontsize=16, rotation=45)
    plt.yticks(fontsize=16)
    plt.tight_layout()
    st.pyplot(plt.gcf())


def create_mortality_by_race(df):
    """Creates a bar chart for Mortality Rate by Race."""
    mortality_race = df.groupby('race')['hospital_expire_flag'].mean().reset_index()
    mortality_race['mortality_rate'] = mortality_race['hospital_expire_flag'] * 100

    fig, ax = plt.subplots(figsize=(6, 4))
    sns.barplot(data=mortality_race, x='race', y='mortality_rate', palette='Set2', ax=ax)
    ax.set_xlabel("Race")
    ax.set_ylabel("Mortality Rate (%)")
    ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
    plt.tight_layout()
    st.pyplot(fig)

def create_mortality_by_gender(df):
    """Creates a bar chart for Mortality Rate by Gender."""
    mortality_gender = df.groupby('gender')['hospital_expire_flag'].mean().reset_index()
    mortality_gender['mortality_rate'] = mortality_gender['hospital_expire_flag'] * 100

    fig, ax = plt.subplots(figsize=(6, 4))
    sns.barplot(data=mortality_gender, x='gender', y='mortality_rate', palette='Set3', ax=ax)
    ax.set_xlabel("Gender")
    ax.set_ylabel("Mortality Rate (%)")
    plt.tight_layout()
    st.pyplot(fig)

def create_mortality_by_age_group(df):
    """Creates a bar chart for Mortality Rate by Age Group."""
    bins = [0, 30, 50, 70, 90, 120]
    labels = ['0-30', '31-50', '51-70', '71-90', '91-120']
    df['age_group'] = pd.cut(df['anchor_age'], bins=bins, labels=labels, right=False)

    mortality_age = df.groupby('age_group')['hospital_expire_flag'].mean().reset_index()
    mortality_age['mortality_rate'] = mortality_age['hospital_expire_flag'] * 100

    fig, ax = plt.subplots(figsize=(6, 4))
    sns.barplot(data=mortality_age, x='age_group', y='mortality_rate', palette='coolwarm', ax=ax)
    ax.set_xlabel("Age Group")
    ax.set_ylabel("Mortality Rate (%)")
    plt.tight_layout()
    st.pyplot(fig)

def create_violin_age_race_mortality(df):
    """Creates a violin plot for Age Distribution by Race and Mortality."""
    fig, ax = plt.subplots(figsize=(8, 6))
    sns.violinplot(
        data=df,
        x='race',
        y='anchor_age',
        hue='hospital_expire_flag',
        split=True,
        palette='Set2',
        ax=ax
    )
    ax.set_xlabel("Race")
    ax.set_ylabel("Age")
    ax.legend(title='Mortality', loc='upper right')
    plt.tight_layout()
    st.pyplot(fig)

def create_heatmap_race_gender_mortality(df):
    """Creates a heatmap for Mortality Rate by Race and Gender."""
    pivot_table = df.pivot_table(
        index='race',
        columns='gender',
        values='hospital_expire_flag',
        aggfunc='mean'
    ) * 100  
    
    fig, ax = plt.subplots(figsize=(8, 6))
    sns.heatmap(pivot_table, annot=True, fmt=".1f", cmap='YlOrRd', ax=ax)
    ax.set_xlabel("Gender")
    ax.set_ylabel("Race")
    plt.tight_layout()
    st.pyplot(fig)


def create_treemap_race_mortality(df):
    """Creates a treemap for Race and Mortality."""
    treemap_df = df.groupby(['race', 'hospital_expire_flag']).size().reset_index(name='counts')
    treemap_df['Mortality'] = treemap_df['hospital_expire_flag'].map({0: 'Survived', 1: 'Died'})

    fig = px.treemap(
        treemap_df,
        path=['race', 'Mortality'],
        values='counts',
        color='Mortality',
        color_discrete_map={'Survived':'#66b3ff','Died':'#ff6666'}
    )
    fig.update_layout(margin = dict(t=30, l=0, r=0, b=0))
    st.plotly_chart(fig, use_container_width=True)

# Streamlit Application

# Set Streamlit page configuration
st.set_page_config(
    page_title="MIMIC-IV ICU Patient Data Dashboard",
    layout="wide",
    initial_sidebar_state="expanded",
)

st.title("MIMIC-IV ICU Patient Data Dashboard")
st.markdown('''
Explore the general feature distribution and demographics related bias in ICU patients from the MIMIC-IV dataset. Utilize the sidebar filters to customize the data view'''
)

# Sidebar Filters
st.sidebar.header("Filter Data")

@st.cache_data
def load_data():

    admissions_df = pd.read_feather('data/admissions.feather')
    patients_df = pd.read_feather('data/patients.feather')
    # diagnoses_icd_df = pd.read_csv('data/diagnoses_icd.csv')
    # pharmacy_df = pd.read_csv('data/pharmacy.csv')
    # prescriptions_df = pd.read_csv('data/prescriptions.csv')
    # d_hcpcs_df = pd.read_csv('data/d_hcpcs.csv')
    # poe_detail_df = pd.read_csv('data/poe_detail.csv')
    # provider_df = pd.read_csv('data/provider.csv')
    
    race_map = {"WHITE":"WHITE",
    "BLACK/AFRICAN AMERICAN":"BLACK",
    "OTHER":"OTHER",
    "UNKNOWN":"UNKNOWN",
    "HISPANIC/LATINO - PUERTO RICAN":"HISPANIC",
    "WHITE - OTHER EUROPEAN":"WHITE",
    "HISPANIC OR LATINO":"HISPANIC",
    "ASIAN":"ASIAN",
    "ASIAN - CHINESE":"ASIAN",
    "WHITE - RUSSIAN":"WHITE",
    "BLACK/CAPE VERDEAN":"BLACK",
    "HISPANIC/LATINO - DOMINICAN":"HISPANIC",
    "BLACK/CARIBBEAN ISLAND":"BLACK",
    "BLACK/AFRICAN":"BLACK",
    "PATIENT DECLINED TO ANSWER":"UNKNOWN",
    "UNABLE TO OBTAIN":"UNKNOWN",
    "PORTUGUESE":"WHITE",
    "ASIAN - SOUTH EAST ASIAN":"ASIAN",
    "HISPANIC/LATINO - GUATEMALAN":"HISPANIC",
    "ASIAN - ASIAN INDIAN":"ASIAN",
    "WHITE - EASTERN EUROPEAN":"WHITE",
    "WHITE - BRAZILIAN":"WHITE",
    "AMERICAN INDIAN/ALASKA NATIVE":"NATIVES",
    "HISPANIC/LATINO - SALVADORAN":"HISPANIC",
    "HISPANIC/LATINO - MEXICAN":"HISPANIC",
    "HISPANIC/LATINO - COLUMBIAN":"HISPANIC",
    "MULTIPLE RACE/ETHNICITY":"MULTI-ETHINIC",
    "HISPANIC/LATINO - HONDURAN":"HISPANIC",
    "ASIAN - KOREAN":"ASIAN",
    "SOUTH AMERICAN":"HISPANIC",
    "HISPANIC/LATINO - CUBAN":"HISPANIC",
    "HISPANIC/LATINO - CENTRAL AMERICAN":"HISPANIC",
    "NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER":"NATIVES"}

    admissions_df['race'] = admissions_df['race'].map(race_map) 

    merged_df = pd.merge(admissions_df, patients_df, on='subject_id', how='left')
    
    merged_df = merged_df.dropna(subset=['anchor_age', 'gender', 'race', 'hospital_expire_flag'])
    
    merged_df['admittime'] = pd.to_datetime(merged_df['admittime'])
    merged_df['dischtime'] = pd.to_datetime(merged_df['dischtime'])
    merged_df['deathtime'] = pd.to_datetime(merged_df['deathtime'], errors='coerce') 
    
    # Create derived features
    merged_df['los'] = (merged_df['dischtime'] - merged_df['admittime']).dt.days
    merged_df['admission_year'] = merged_df['admittime'].dt.year
    merged_df['admission_month'] = merged_df['admittime'].dt.month_name()
    merged_df['admittime_date'] = merged_df['admittime'].dt.date
    
    return merged_df

merged_df = load_data()

# Sidebar Filters Function
def add_sidebar_filters(df):
    # Admission Types
    admission_types = sorted(df['admission_type'].unique())
    selected_admission_types = st.sidebar.multiselect(
        "Select Admission Type(s):",
        options=admission_types,
        default=admission_types
    )
    
    # Insurance Types
    insurance_types = sorted(df['insurance'].unique())
    selected_insurance_types = st.sidebar.multiselect(
        "Select Insurance Type(s):",
        options=insurance_types,
        default=insurance_types
    )
    
    # Gender
    genders = sorted(df['gender'].unique())
    selected_genders = st.sidebar.multiselect(
        "Select Gender(s):",
        options=genders,
        default=genders
    )
    
    # Race
    races = sorted(df['race'].unique())
    selected_races = st.sidebar.multiselect(
        "Select Race(s):",
        options=races,
        default=races
    )
    
    # Year Range
    min_year = int(df['admission_year'].min())
    max_year = int(df['admission_year'].max())
    selected_years = st.sidebar.slider(
        "Select Admission Year Range:",
        min_value=min_year,
        max_value=max_year,
        value=(min_year, max_year)
    )
    
    # Apply Filters
    filtered_df = df[
        (df['admission_type'].isin(selected_admission_types)) &
        (df['insurance'].isin(selected_insurance_types)) &
        (df['gender'].isin(selected_genders)) &
        (df['race'].isin(selected_races)) &
        (df['admission_year'] >= selected_years[0]) &
        (df['admission_year'] <= selected_years[1])
    ]
    
    return filtered_df

filtered_df = add_sidebar_filters(merged_df)

# Display Summary Statistics for Q1
st.header("Summary Statistics")

# Create four columns for metrics
col1, col2, col3, col4 = st.columns(4)

with col1:
    total_admissions = filtered_df.shape[0]
    st.metric("Total Admissions", f"{total_admissions:,}")

with col2:
    average_age = filtered_df['anchor_age'].mean()
    st.metric("Average Age", f"{average_age:.2f} years")

with col3:
    gender_counts = filtered_df['gender'].value_counts()
    male_count = gender_counts.get('M', 0)
    female_count = gender_counts.get('F', 0)
    st.metric("Male Patients", f"{male_count:,}")
    st.metric("Female Patients", f"{female_count:,}")

with col4:
    mortality_rate = filtered_df['hospital_expire_flag'].mean() * 100  # Percentage
    st.metric("Mortality Rate", f"{mortality_rate:.2f}%")

st.markdown("---")

# Create Tabs for Q1 and Q2
tabs = st.tabs(["General Overview", "Potential Biases"])

# Q1: General Overview

with tabs[0]:
    st.subheader("General Feature Distribution and Outcome Metrics")
    
    # Define the number of columns per row
    num_cols = 2
    
    # Define all Q1 plots in a list with titles and plot-generating functions
    q1_plots_2_col = [
        {
            "title": "Gender Distribution",
            "plot": lambda: create_gender_pie_chart(filtered_df)
        },
        {
            "title": "Race Distribution",
            "plot": lambda: create_race_pie_chart(filtered_df)
        },
        {
            "title": "Insurance Type Distribution",
            "plot": lambda: create_insurance_pie_chart(filtered_df)
        },
        {
            "title": "Mortality Rate of ICU Patients",
            "plot": lambda: create_mortality_pie_chart(filtered_df)
        }
    ]
    # Arrange Q1 plots in a grid layout
    for i in range(0, len(q1_plots_2_col), num_cols):
        cols = st.columns(num_cols)
        for j in range(num_cols):
            if i + j < len(q1_plots_2_col):
                with cols[j]:
                    st.subheader(q1_plots_2_col[i + j]["title"])
                    q1_plots_2_col[i + j]["plot"]()
    
    num_cols = 1
    
    q1_plots_1_col = [
        {
            "title": "Admission Type Count",
            "plot": lambda: create_admission_type_bar_chart(filtered_df)
        },
        {
            "title": "Admissions Over Time",
            "plot": lambda: create_time_series_heatmap(filtered_df)
        }
    ]
    
    # Arrange Q1 plots in a grid layout
    for i in range(0, len(q1_plots_1_col), num_cols):
        cols = st.columns(num_cols)
        for j in range(num_cols):
            if i + j < len(q1_plots_1_col):
                with cols[j]:
                    st.subheader(q1_plots_1_col[i + j]["title"])
                    q1_plots_1_col[i + j]["plot"]()


# Q2: Potential Biases
with tabs[1]:
    st.subheader("Analyzing Potential Biases Across Demographics")
    
    # Define the number of columns per row
    num_cols = 2
    
    # Define all Q2 plots in a list with titles and plot-generating functions
    q2_plots = [
        
        {
            "title": "Age Distribution of ICU Patients",
            "plot": lambda: create_age_distribution_by_gender(filtered_df)
        },
        {
            "title": "Boxen Plot of Age Distribution by Admission Type",
            "plot": lambda: create_age_distribution_by_admission_type(filtered_df)
        },
        {
            "title": "Mortality Rate by Race",
            "plot": lambda: create_mortality_by_race(filtered_df)
        },
        {
            "title": "Mortality Rate by Gender",
            "plot": lambda: create_mortality_by_gender(filtered_df)
        },
        {
            "title": "Mortality Rate by Age Group",
            "plot": lambda: create_mortality_by_age_group(filtered_df)
        },
        {
            "title": "Age Distribution by Race and Mortality",
            "plot": lambda: create_violin_age_race_mortality(filtered_df)
        },
        {
            "title": "Heatmap: Race & Gender vs. Mortality",
            "plot": lambda: create_heatmap_race_gender_mortality(filtered_df)
        },
        {
            "title": "Treemap of Race and Mortality",
            "plot": lambda: create_treemap_race_mortality(filtered_df)
        }
    ]
    
    # Arrange Q2 plots in a grid layout
    for i in range(0, len(q2_plots), num_cols):
        cols = st.columns(num_cols)
        for j in range(num_cols):
            if i + j < len(q2_plots):
                with cols[j]:
                    st.subheader(q2_plots[i + j]["title"])
                    q2_plots[i + j]["plot"]()

# Footer
st.markdown("""
---
**Data Source:** MIMIC-IV Dataset  
**Project:** Fairness in EHR Data  
**Developed with:** Streamlit, Python
**Q3 Visuals:** https://idyllic-cucurucho-672fc1.netlify.app/ 
""")