Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
|
@@ -1,148 +1,155 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import os
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
from typing import Optional, Union, Dict
|
| 7 |
-
from huggingface_hub import snapshot_download
|
| 8 |
-
import warnings
|
| 9 |
-
|
| 10 |
-
class ConvVAE(nn.Module):
|
| 11 |
-
def __init__(self, latent_size):
|
| 12 |
-
super(ConvVAE, self).__init__()
|
| 13 |
-
|
| 14 |
-
# Encoder
|
| 15 |
-
self.encoder = nn.Sequential(
|
| 16 |
-
nn.Conv2d(3, 64, 3, stride=2, padding=1), # (batch, 64, 64, 64)
|
| 17 |
-
nn.BatchNorm2d(64),
|
| 18 |
-
nn.ReLU(),
|
| 19 |
-
nn.Conv2d(64, 128, 3, stride=2, padding=1), # (batch, 128, 32, 32)
|
| 20 |
-
nn.BatchNorm2d(128),
|
| 21 |
-
nn.ReLU(),
|
| 22 |
-
nn.Conv2d(128, 256, 3, stride=2, padding=1), # (batch, 256, 16, 16)
|
| 23 |
-
nn.BatchNorm2d(256),
|
| 24 |
-
nn.ReLU(),
|
| 25 |
-
nn.Conv2d(256, 512, 3, stride=2, padding=1), # (batch, 512, 8, 8)
|
| 26 |
-
nn.BatchNorm2d(512),
|
| 27 |
-
nn.ReLU()
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
self.fc_mu = nn.Linear(512 * 8 * 8, latent_size)
|
| 31 |
-
self.fc_logvar = nn.Linear(512 * 8 * 8, latent_size)
|
| 32 |
-
|
| 33 |
-
self.fc2 = nn.Linear(latent_size, 512 * 8 * 8)
|
| 34 |
-
|
| 35 |
-
self.decoder = nn.Sequential(
|
| 36 |
-
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), # (batch, 256, 16, 16)
|
| 37 |
-
nn.BatchNorm2d(256),
|
| 38 |
-
nn.ReLU(),
|
| 39 |
-
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), # (batch, 128, 32, 32)
|
| 40 |
-
nn.BatchNorm2d(128),
|
| 41 |
-
nn.ReLU(),
|
| 42 |
-
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), # (batch, 64, 64, 64)
|
| 43 |
-
nn.BatchNorm2d(64),
|
| 44 |
-
nn.ReLU(),
|
| 45 |
-
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), # (batch, 3, 128, 128)
|
| 46 |
-
nn.Tanh()
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
def forward(self, x):
|
| 50 |
-
mu, logvar = self.encode(x)
|
| 51 |
-
z = self.reparameterize(mu, logvar)
|
| 52 |
-
decoded = self.decode(z)
|
| 53 |
-
return decoded, mu, logvar
|
| 54 |
-
|
| 55 |
-
def encode(self, x):
|
| 56 |
-
x = self.encoder(x)
|
| 57 |
-
x = x.view(x.size(0), -1)
|
| 58 |
-
mu = self.fc_mu(x)
|
| 59 |
-
logvar = self.fc_logvar(x)
|
| 60 |
-
return mu, logvar
|
| 61 |
-
|
| 62 |
-
def reparameterize(self, mu, logvar):
|
| 63 |
-
std = torch.exp(0.5 * logvar)
|
| 64 |
-
eps = torch.randn_like(std)
|
| 65 |
-
return mu + eps * std
|
| 66 |
-
|
| 67 |
-
def decode(self, z):
|
| 68 |
-
x = self.fc2(z)
|
| 69 |
-
x = x.view(-1, 512, 8, 8)
|
| 70 |
-
decoded = self.decoder(x)
|
| 71 |
-
return decoded
|
| 72 |
-
|
| 73 |
-
@classmethod
|
| 74 |
-
def from_pretrained(
|
| 75 |
-
cls,
|
| 76 |
-
model_id: str,
|
| 77 |
-
revision: Optional[str] = None,
|
| 78 |
-
cache_dir: Optional[Union[str, Path]] = None,
|
| 79 |
-
force_download: bool = False,
|
| 80 |
-
proxies: Optional[Dict] = None,
|
| 81 |
-
resume_download: bool = False,
|
| 82 |
-
local_files_only: bool = False,
|
| 83 |
-
token: Union[str, bool, None] = None,
|
| 84 |
-
map_location: str = "cpu",
|
| 85 |
-
strict: bool = False,
|
| 86 |
-
**model_kwargs,
|
| 87 |
-
):
|
| 88 |
-
"""
|
| 89 |
-
Load a pretrained model from a given model ID.
|
| 90 |
-
|
| 91 |
-
Args:
|
| 92 |
-
model_id (str): Identifier of the model to load.
|
| 93 |
-
revision (Optional[str]): Specific model revision to use.
|
| 94 |
-
cache_dir (Optional[Union[str, Path]]): Directory to store downloaded models.
|
| 95 |
-
force_download (bool): Force re-download even if the model exists.
|
| 96 |
-
proxies (Optional[Dict]): Proxy configuration for downloads.
|
| 97 |
-
resume_download (bool): Resume interrupted downloads.
|
| 98 |
-
local_files_only (bool): Use only local files, don't download.
|
| 99 |
-
token (Union[str, bool, None]): Token for API authentication.
|
| 100 |
-
map_location (str): Device to map model to. Defaults to "cpu".
|
| 101 |
-
strict (bool): Enforce strict state_dict loading.
|
| 102 |
-
**model_kwargs: Additional keyword arguments for model initialization.
|
| 103 |
-
|
| 104 |
-
Returns:
|
| 105 |
-
An instance of the model loaded from the pretrained weights.
|
| 106 |
-
"""
|
| 107 |
-
model_dir = Path(model_id)
|
| 108 |
-
if not model_dir.exists():
|
| 109 |
-
model_dir = Path(
|
| 110 |
-
snapshot_download(
|
| 111 |
-
repo_id=model_id,
|
| 112 |
-
revision=revision,
|
| 113 |
-
cache_dir=cache_dir,
|
| 114 |
-
force_download=force_download,
|
| 115 |
-
proxies=proxies,
|
| 116 |
-
resume_download=resume_download,
|
| 117 |
-
token=token,
|
| 118 |
-
local_files_only=local_files_only,
|
| 119 |
-
)
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
config_file = model_dir / "config.json"
|
| 123 |
-
with open(config_file, 'r') as f:
|
| 124 |
-
config = json.load(f)
|
| 125 |
-
|
| 126 |
-
latent_size = config.get('latent_size')
|
| 127 |
-
if latent_size is None:
|
| 128 |
-
raise ValueError("The configuration file is missing the 'latent_size' key.")
|
| 129 |
-
|
| 130 |
-
model = cls(latent_size, **model_kwargs)
|
| 131 |
-
|
| 132 |
-
model_file = model_dir / "model_conv_vae_256_epoch_304.pth"
|
| 133 |
-
if not model_file.exists():
|
| 134 |
-
raise FileNotFoundError(f"The model checkpoint '{model_file}' does not exist.")
|
| 135 |
-
|
| 136 |
-
state_dict = torch.load(model_file, map_location=map_location)
|
| 137 |
-
|
| 138 |
-
new_state_dict = {}
|
| 139 |
-
for k, v in state_dict.items():
|
| 140 |
-
if k.startswith('_orig_mod.'):
|
| 141 |
-
new_state_dict[k[len('_orig_mod.'):]] = v
|
| 142 |
-
else:
|
| 143 |
-
new_state_dict[k] = v
|
| 144 |
-
|
| 145 |
-
model.load_state_dict(new_state_dict, strict=strict)
|
| 146 |
-
model.to(map_location)
|
| 147 |
-
|
| 148 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Optional, Union, Dict
|
| 7 |
+
from huggingface_hub import snapshot_download
|
| 8 |
+
import warnings
|
| 9 |
+
|
| 10 |
+
class ConvVAE(nn.Module):
|
| 11 |
+
def __init__(self, latent_size):
|
| 12 |
+
super(ConvVAE, self).__init__()
|
| 13 |
+
|
| 14 |
+
# Encoder
|
| 15 |
+
self.encoder = nn.Sequential(
|
| 16 |
+
nn.Conv2d(3, 64, 3, stride=2, padding=1), # (batch, 64, 64, 64)
|
| 17 |
+
nn.BatchNorm2d(64),
|
| 18 |
+
nn.ReLU(),
|
| 19 |
+
nn.Conv2d(64, 128, 3, stride=2, padding=1), # (batch, 128, 32, 32)
|
| 20 |
+
nn.BatchNorm2d(128),
|
| 21 |
+
nn.ReLU(),
|
| 22 |
+
nn.Conv2d(128, 256, 3, stride=2, padding=1), # (batch, 256, 16, 16)
|
| 23 |
+
nn.BatchNorm2d(256),
|
| 24 |
+
nn.ReLU(),
|
| 25 |
+
nn.Conv2d(256, 512, 3, stride=2, padding=1), # (batch, 512, 8, 8)
|
| 26 |
+
nn.BatchNorm2d(512),
|
| 27 |
+
nn.ReLU()
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
self.fc_mu = nn.Linear(512 * 8 * 8, latent_size)
|
| 31 |
+
self.fc_logvar = nn.Linear(512 * 8 * 8, latent_size)
|
| 32 |
+
|
| 33 |
+
self.fc2 = nn.Linear(latent_size, 512 * 8 * 8)
|
| 34 |
+
|
| 35 |
+
self.decoder = nn.Sequential(
|
| 36 |
+
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), # (batch, 256, 16, 16)
|
| 37 |
+
nn.BatchNorm2d(256),
|
| 38 |
+
nn.ReLU(),
|
| 39 |
+
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), # (batch, 128, 32, 32)
|
| 40 |
+
nn.BatchNorm2d(128),
|
| 41 |
+
nn.ReLU(),
|
| 42 |
+
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), # (batch, 64, 64, 64)
|
| 43 |
+
nn.BatchNorm2d(64),
|
| 44 |
+
nn.ReLU(),
|
| 45 |
+
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), # (batch, 3, 128, 128)
|
| 46 |
+
nn.Tanh()
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
mu, logvar = self.encode(x)
|
| 51 |
+
z = self.reparameterize(mu, logvar)
|
| 52 |
+
decoded = self.decode(z)
|
| 53 |
+
return decoded, mu, logvar
|
| 54 |
+
|
| 55 |
+
def encode(self, x):
|
| 56 |
+
x = self.encoder(x)
|
| 57 |
+
x = x.view(x.size(0), -1)
|
| 58 |
+
mu = self.fc_mu(x)
|
| 59 |
+
logvar = self.fc_logvar(x)
|
| 60 |
+
return mu, logvar
|
| 61 |
+
|
| 62 |
+
def reparameterize(self, mu, logvar):
|
| 63 |
+
std = torch.exp(0.5 * logvar)
|
| 64 |
+
eps = torch.randn_like(std)
|
| 65 |
+
return mu + eps * std
|
| 66 |
+
|
| 67 |
+
def decode(self, z):
|
| 68 |
+
x = self.fc2(z)
|
| 69 |
+
x = x.view(-1, 512, 8, 8)
|
| 70 |
+
decoded = self.decoder(x)
|
| 71 |
+
return decoded
|
| 72 |
+
|
| 73 |
+
@classmethod
|
| 74 |
+
def from_pretrained(
|
| 75 |
+
cls,
|
| 76 |
+
model_id: str,
|
| 77 |
+
revision: Optional[str] = None,
|
| 78 |
+
cache_dir: Optional[Union[str, Path]] = None,
|
| 79 |
+
force_download: bool = False,
|
| 80 |
+
proxies: Optional[Dict] = None,
|
| 81 |
+
resume_download: bool = False,
|
| 82 |
+
local_files_only: bool = False,
|
| 83 |
+
token: Union[str, bool, None] = None,
|
| 84 |
+
map_location: str = "cpu",
|
| 85 |
+
strict: bool = False,
|
| 86 |
+
**model_kwargs,
|
| 87 |
+
):
|
| 88 |
+
"""
|
| 89 |
+
Load a pretrained model from a given model ID.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
model_id (str): Identifier of the model to load.
|
| 93 |
+
revision (Optional[str]): Specific model revision to use.
|
| 94 |
+
cache_dir (Optional[Union[str, Path]]): Directory to store downloaded models.
|
| 95 |
+
force_download (bool): Force re-download even if the model exists.
|
| 96 |
+
proxies (Optional[Dict]): Proxy configuration for downloads.
|
| 97 |
+
resume_download (bool): Resume interrupted downloads.
|
| 98 |
+
local_files_only (bool): Use only local files, don't download.
|
| 99 |
+
token (Union[str, bool, None]): Token for API authentication.
|
| 100 |
+
map_location (str): Device to map model to. Defaults to "cpu".
|
| 101 |
+
strict (bool): Enforce strict state_dict loading.
|
| 102 |
+
**model_kwargs: Additional keyword arguments for model initialization.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
An instance of the model loaded from the pretrained weights.
|
| 106 |
+
"""
|
| 107 |
+
model_dir = Path(model_id)
|
| 108 |
+
if not model_dir.exists():
|
| 109 |
+
model_dir = Path(
|
| 110 |
+
snapshot_download(
|
| 111 |
+
repo_id=model_id,
|
| 112 |
+
revision=revision,
|
| 113 |
+
cache_dir=cache_dir,
|
| 114 |
+
force_download=force_download,
|
| 115 |
+
proxies=proxies,
|
| 116 |
+
resume_download=resume_download,
|
| 117 |
+
token=token,
|
| 118 |
+
local_files_only=local_files_only,
|
| 119 |
+
)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
config_file = model_dir / "config.json"
|
| 123 |
+
with open(config_file, 'r') as f:
|
| 124 |
+
config = json.load(f)
|
| 125 |
+
|
| 126 |
+
latent_size = config.get('latent_size')
|
| 127 |
+
if latent_size is None:
|
| 128 |
+
raise ValueError("The configuration file is missing the 'latent_size' key.")
|
| 129 |
+
|
| 130 |
+
model = cls(latent_size, **model_kwargs)
|
| 131 |
+
|
| 132 |
+
model_file = model_dir / "model_conv_vae_256_epoch_304.pth"
|
| 133 |
+
if not model_file.exists():
|
| 134 |
+
raise FileNotFoundError(f"The model checkpoint '{model_file}' does not exist.")
|
| 135 |
+
|
| 136 |
+
state_dict = torch.load(model_file, map_location=map_location)
|
| 137 |
+
|
| 138 |
+
new_state_dict = {}
|
| 139 |
+
for k, v in state_dict.items():
|
| 140 |
+
if k.startswith('_orig_mod.'):
|
| 141 |
+
new_state_dict[k[len('_orig_mod.'):]] = v
|
| 142 |
+
else:
|
| 143 |
+
new_state_dict[k] = v
|
| 144 |
+
|
| 145 |
+
model.load_state_dict(new_state_dict, strict=strict)
|
| 146 |
+
model.to(map_location)
|
| 147 |
+
|
| 148 |
+
return model
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
model = ConvVAE.from_pretrained(
|
| 152 |
+
model_id="BioMike/classical_portrait_vae",
|
| 153 |
+
cache_dir="./model_cache",
|
| 154 |
+
map_location="cpu",
|
| 155 |
+
strict=True).eval()
|