Spaces:
Sleeping
Sleeping
Update morphing.py
Browse files- morphing.py +84 -83
morphing.py
CHANGED
|
@@ -1,83 +1,84 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from torchvision import transforms
|
| 4 |
-
from PIL import Image, ImageFilter
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import numpy as np
|
| 7 |
-
import os
|
| 8 |
-
import uuid
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
transforms.
|
| 15 |
-
transforms.
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
image =
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
img = (img
|
| 48 |
-
|
| 49 |
-
pil_img =
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
["example_images/
|
| 68 |
-
]
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
from PIL import Image, ImageFilter
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
import uuid
|
| 9 |
+
from model import model
|
| 10 |
+
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
|
| 13 |
+
transform = transforms.Compose([
|
| 14 |
+
transforms.Resize((128, 128)),
|
| 15 |
+
transforms.ToTensor(),
|
| 16 |
+
transforms.Normalize((0.5,), (0.5,))
|
| 17 |
+
])
|
| 18 |
+
|
| 19 |
+
resize_transform = transforms.Resize((512, 512))
|
| 20 |
+
|
| 21 |
+
def load_image(image):
|
| 22 |
+
image = Image.fromarray(image).convert('RGB')
|
| 23 |
+
image = transform(image)
|
| 24 |
+
return image.unsqueeze(0).to(device)
|
| 25 |
+
|
| 26 |
+
def interpolate_vectors(v1, v2, num_steps):
|
| 27 |
+
return [v1 * (1 - alpha) + v2 * alpha for alpha in np.linspace(0, 1, num_steps)]
|
| 28 |
+
|
| 29 |
+
def infer_and_interpolate(image1, image2, num_interpolations=24):
|
| 30 |
+
image1 = load_image(image1)
|
| 31 |
+
image2 = load_image(image2)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
mu1, logvar1 = model.encode(image1)
|
| 35 |
+
mu2, logvar2 = model.encode(image2)
|
| 36 |
+
interpolated_vectors = interpolate_vectors(mu1, mu2, num_interpolations)
|
| 37 |
+
decoded_images = [model.decode(vec).squeeze(0) for vec in interpolated_vectors]
|
| 38 |
+
|
| 39 |
+
return decoded_images
|
| 40 |
+
|
| 41 |
+
def create_gif(decoded_images, duration=200, apply_blur=False):
|
| 42 |
+
reversed_images = decoded_images[::-1]
|
| 43 |
+
all_images = decoded_images + reversed_images
|
| 44 |
+
|
| 45 |
+
pil_images = []
|
| 46 |
+
for img in all_images:
|
| 47 |
+
img = (img - img.min()) / (img.max() - img.min())
|
| 48 |
+
img = (img * 255).byte()
|
| 49 |
+
pil_img = transforms.ToPILImage()(img.cpu()).convert("RGB")
|
| 50 |
+
pil_img = resize_transform(pil_img)
|
| 51 |
+
if apply_blur:
|
| 52 |
+
pil_img = pil_img.filter(ImageFilter.GaussianBlur(radius=1))
|
| 53 |
+
pil_images.append(pil_img)
|
| 54 |
+
|
| 55 |
+
gif_filename = f"/tmp/morphing_{uuid.uuid4().hex}.gif"
|
| 56 |
+
pil_images[0].save(gif_filename, save_all=True, append_images=pil_images[1:], duration=duration, loop=0)
|
| 57 |
+
|
| 58 |
+
return gif_filename
|
| 59 |
+
|
| 60 |
+
def create_morphing_gif(image1, image2, num_interpolations=24, duration=200):
|
| 61 |
+
decoded_images = infer_and_interpolate(image1, image2, num_interpolations)
|
| 62 |
+
gif_path = create_gif(decoded_images, duration)
|
| 63 |
+
|
| 64 |
+
return gif_path
|
| 65 |
+
|
| 66 |
+
examples = [
|
| 67 |
+
["example_images/image1.jpg", "example_images/image2.png", 24, 200],
|
| 68 |
+
["example_images/image3.jpg", "example_images/image4.jpg", 30, 150],
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
with gr.Blocks() as morphing:
|
| 72 |
+
with gr.Column():
|
| 73 |
+
with gr.Column():
|
| 74 |
+
num_interpolations = gr.Slider(minimum=2, maximum=50, value=24, step=1, label="Number of interpolations")
|
| 75 |
+
duration = gr.Slider(minimum=100, maximum=1000, value=200, step=50, label="Duration per frame (ms)")
|
| 76 |
+
generate_button = gr.Button("Generate Morphing GIF")
|
| 77 |
+
output_gif = gr.Image(label="Morphing GIF")
|
| 78 |
+
with gr.Row():
|
| 79 |
+
image1 = gr.Image(label="Upload first image", type="numpy")
|
| 80 |
+
image2 = gr.Image(label="Upload second image", type="numpy")
|
| 81 |
+
|
| 82 |
+
generate_button.click(fn=create_morphing_gif, inputs=[image1, image2, num_interpolations, duration], outputs=output_gif)
|
| 83 |
+
|
| 84 |
+
gr.Examples(examples=examples, inputs=[image1, image2, num_interpolations, duration])
|