Spaces:
Running
Running
Commit
·
9f75635
1
Parent(s):
70ce1b2
reduce model with half-precision (float16) to reduce RAM usage
Browse files- Dockerfile +3 -0
- app.py +7 -23
- requirements.txt +2 -1
- warmup.py +8 -0
Dockerfile
CHANGED
|
@@ -25,6 +25,9 @@ RUN mkdir -p /app/model_cache /home/user/.cache/huggingface/sentence-transformer
|
|
| 25 |
# Run the model download script
|
| 26 |
RUN python /app/download_model.py
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
# Ensure ownership and permissions remain intact
|
| 29 |
RUN chown -R user:user /app/model_cache
|
| 30 |
|
|
|
|
| 25 |
# Run the model download script
|
| 26 |
RUN python /app/download_model.py
|
| 27 |
|
| 28 |
+
# Pre-load model in a separate script
|
| 29 |
+
RUN python /app/download_model.py && python /app/warmup.py
|
| 30 |
+
|
| 31 |
# Ensure ownership and permissions remain intact
|
| 32 |
RUN chown -R user:user /app/model_cache
|
| 33 |
|
app.py
CHANGED
|
@@ -52,39 +52,23 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
| 52 |
|
| 53 |
# 2. Setup Hugging Face Cloud project model cache
|
| 54 |
MODEL_CACHE_DIR = "/app/model_cache"
|
| 55 |
-
# Verify structure
|
| 56 |
-
print("\n📂 LLM Model Structure (Application Level):")
|
| 57 |
-
for root, dirs, files in os.walk(MODEL_CACHE_DIR):
|
| 58 |
-
print(f"📁 {root}/")
|
| 59 |
-
for file in files:
|
| 60 |
-
print(f" 📄 {file}")
|
| 61 |
# Ensure all necessary files exist
|
| 62 |
required_files = ["config.json", "pytorch_model.bin", "tokenizer.json", "1_Pooling/config.json"]
|
| 63 |
for f in required_files:
|
| 64 |
if not os.path.exists(os.path.join(MODEL_CACHE_DIR, f)):
|
| 65 |
print(f"❌ Missing required model file: {f}")
|
| 66 |
exit(1)
|
| 67 |
-
# Check if the required model files exist
|
| 68 |
-
snapshots_path = os.path.join(MODEL_CACHE_DIR, "models--sentence-transformers--all-MiniLM-L6-v2/snapshots")
|
| 69 |
-
if os.path.exists(snapshots_path):
|
| 70 |
-
snapshot_folders = os.listdir(snapshots_path)
|
| 71 |
-
if snapshot_folders:
|
| 72 |
-
model_loc = os.path.join(snapshots_path, snapshot_folders[0])
|
| 73 |
-
print(f"✅ Found model snapshot at {model_loc}")
|
| 74 |
-
else:
|
| 75 |
-
print("❌ No snapshot folder found!")
|
| 76 |
-
exit(1)
|
| 77 |
-
else:
|
| 78 |
-
print("❌ No snapshots directory found! Reload ...")
|
| 79 |
-
exit(1)
|
| 80 |
|
| 81 |
-
# 3.
|
| 82 |
from sentence_transformers import SentenceTransformer
|
| 83 |
-
|
|
|
|
| 84 |
start_time = time.time()
|
| 85 |
try:
|
| 86 |
-
embedding_model = SentenceTransformer(
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
except Exception as e:
|
| 89 |
print(f"❌ Error loading model: {e}")
|
| 90 |
exit(1)
|
|
|
|
| 52 |
|
| 53 |
# 2. Setup Hugging Face Cloud project model cache
|
| 54 |
MODEL_CACHE_DIR = "/app/model_cache"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Ensure all necessary files exist
|
| 56 |
required_files = ["config.json", "pytorch_model.bin", "tokenizer.json", "1_Pooling/config.json"]
|
| 57 |
for f in required_files:
|
| 58 |
if not os.path.exists(os.path.join(MODEL_CACHE_DIR, f)):
|
| 59 |
print(f"❌ Missing required model file: {f}")
|
| 60 |
exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# 3. Use the preloaded model from `warmup.py`
|
| 63 |
from sentence_transformers import SentenceTransformer
|
| 64 |
+
import torch
|
| 65 |
+
print("📥 **Using Preloaded Embedding Model from Warm-up...**")
|
| 66 |
start_time = time.time()
|
| 67 |
try:
|
| 68 |
+
embedding_model = SentenceTransformer(MODEL_CACHE_DIR, device="cpu")
|
| 69 |
+
embedding_model = embedding_model.half() # Ensure it stays quantized
|
| 70 |
+
embedding_model.to(torch.device("cpu"))
|
| 71 |
+
print("✅ Model ready in {:.2f} seconds.".format(time.time() - start_time))
|
| 72 |
except Exception as e:
|
| 73 |
print(f"❌ Error loading model: {e}")
|
| 74 |
exit(1)
|
requirements.txt
CHANGED
|
@@ -10,11 +10,12 @@ sentence-transformers
|
|
| 10 |
# datasets # Expect to load from Mongo only, no need to fetch dataset from HuggingFace unless re-embedding
|
| 11 |
# googletrans # Translate and process multi-language with LLM already
|
| 12 |
# **Environment**
|
| 13 |
-
python-dotenv
|
| 14 |
pymongo
|
| 15 |
# **Deployment**
|
| 16 |
uvicorn
|
| 17 |
fastapi
|
|
|
|
| 18 |
# gradio # On Huggingface deployment with gradio or serving FastAPI only
|
| 19 |
# streamlit # On streamlit deployment with daemon
|
| 20 |
# requests
|
|
|
|
| 10 |
# datasets # Expect to load from Mongo only, no need to fetch dataset from HuggingFace unless re-embedding
|
| 11 |
# googletrans # Translate and process multi-language with LLM already
|
| 12 |
# **Environment**
|
| 13 |
+
python-dotenv # Not used in Streamlit deployment
|
| 14 |
pymongo
|
| 15 |
# **Deployment**
|
| 16 |
uvicorn
|
| 17 |
fastapi
|
| 18 |
+
torch # Reduce model load with half-precision (float16) to reduce RAM usage
|
| 19 |
# gradio # On Huggingface deployment with gradio or serving FastAPI only
|
| 20 |
# streamlit # On streamlit deployment with daemon
|
| 21 |
# requests
|
warmup.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
print("🚀 Warming up model...")
|
| 5 |
+
embedding_model = SentenceTransformer("/app/model_cache", device="cpu")
|
| 6 |
+
embedding_model = embedding_model.half() # Reduce memory
|
| 7 |
+
embedding_model.to(torch.device("cpu"))
|
| 8 |
+
print("✅ Model warm-up complete!")
|