Spaces:
Running
Running
Commit
·
52c6b94
1
Parent(s):
6d29691
Migrate hf_hub to transformers fuser
Browse files
vlm.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
# vlm.py
|
2 |
-
import os, logging, traceback, json
|
3 |
-
from
|
|
|
|
|
|
|
4 |
from translation import translate_query
|
5 |
|
6 |
# Initialise once
|
@@ -10,6 +13,16 @@ client = InferenceClient(provider="auto", api_key=HF_TOKEN)
|
|
10 |
logger = logging.getLogger("vlm-agent")
|
11 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def process_medical_image(base64_image: str, prompt: str = None, lang: str = "EN") -> str:
|
14 |
"""
|
15 |
Send base64 image + prompt to MedGEMMA and return output.
|
@@ -20,16 +33,22 @@ def process_medical_image(base64_image: str, prompt: str = None, lang: str = "EN
|
|
20 |
user_query = translate_query(user_query, lang.lower())
|
21 |
# Send over API
|
22 |
try:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Validate response
|
34 |
if not response or not hasattr(response, "choices") or not response.choices:
|
35 |
raise ValueError("Empty or malformed response from MedGEMMA.")
|
|
|
1 |
# vlm.py
|
2 |
+
import os, logging, traceback, json, base64
|
3 |
+
from io import BytesIO
|
4 |
+
from PIL import Image
|
5 |
+
# from huggingface_hub import InferenceClient # Render model on HF hub
|
6 |
+
from transformers import pipeline # Render model on transformers
|
7 |
from translation import translate_query
|
8 |
|
9 |
# Initialise once
|
|
|
13 |
logger = logging.getLogger("vlm-agent")
|
14 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader
|
15 |
|
16 |
+
# ✅ Load VLM pipeline once (lazy load allowed)
|
17 |
+
vlm_pipe = None
|
18 |
+
def load_vlm():
|
19 |
+
global vlm_pipe
|
20 |
+
if vlm_pipe is None:
|
21 |
+
logger.info("⏳ Loading MedGEMMA model via Transformers pipeline...")
|
22 |
+
vlm_pipe = pipeline("image-to-text", model="google/medgemma-4b", device_map="auto")
|
23 |
+
logger.info("✅ MedGEMMA model ready.")
|
24 |
+
return vlm_pipe
|
25 |
+
|
26 |
def process_medical_image(base64_image: str, prompt: str = None, lang: str = "EN") -> str:
|
27 |
"""
|
28 |
Send base64 image + prompt to MedGEMMA and return output.
|
|
|
33 |
user_query = translate_query(user_query, lang.lower())
|
34 |
# Send over API
|
35 |
try:
|
36 |
+
# HF hub
|
37 |
+
# response = client.chat.completions.create(
|
38 |
+
# model="google/medgemma-4b-it",
|
39 |
+
# messages=[{
|
40 |
+
# "role": "user",
|
41 |
+
# "content": [
|
42 |
+
# {"type": "text", "text": prompt},
|
43 |
+
# {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
44 |
+
# ]
|
45 |
+
# }]
|
46 |
+
# )
|
47 |
+
# Transformers
|
48 |
+
image_data = base64.b64decode(base64_image) # Decode base64 to PIL Image
|
49 |
+
image = Image.open(BytesIO(image_data)).convert("RGB")
|
50 |
+
pipe = load_vlm()
|
51 |
+
response = pipe(image, prompt=prompt, max_new_tokens=100)[0]["generated_text"]
|
52 |
# Validate response
|
53 |
if not response or not hasattr(response, "choices") or not response.choices:
|
54 |
raise ValueError("Empty or malformed response from MedGEMMA.")
|