Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import torch | |
import tempfile | |
import logging | |
import math | |
from typing import Tuple, Union, Any | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
from dotenv import load_dotenv | |
import spaces | |
import gradio as gr | |
import numpy as np | |
# Transformers & Models | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
pipeline, | |
AutoProcessor, | |
MusicgenForConditionalGeneration, | |
) | |
# Coqui TTS | |
from TTS.api import TTS | |
# Diffusers for sound design generation | |
from diffusers import DiffusionPipeline, AudioLDMPipeline | |
import diffusers | |
from packaging import version | |
# --------------------------------------------------------------------- | |
# Setup Logging and Environment Variables | |
# --------------------------------------------------------------------- | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if not HF_TOKEN: | |
logging.warning("HF_TOKEN is not set in your environment. Some model downloads might fail.") | |
# --------------------------------------------------------------------- | |
# Global Model Caches | |
# --------------------------------------------------------------------- | |
LLAMA_PIPELINES: dict[str, Any] = {} | |
MUSICGEN_MODELS: dict[str, Any] = {} | |
TTS_MODELS: dict[str, Any] = {} | |
SOUND_DESIGN_PIPELINES: dict[str, Any] = {} | |
# --------------------------------------------------------------------- | |
# Utility Functions | |
# --------------------------------------------------------------------- | |
def clean_text(text: str) -> str: | |
""" | |
Remove undesired characters that may not be recognized by the model. | |
Args: | |
text (str): Input text to be cleaned. | |
Returns: | |
str: Cleaned text. | |
""" | |
return re.sub(r'\*', '', text) | |
# --------------------------------------------------------------------- | |
# Model Helper Functions | |
# --------------------------------------------------------------------- | |
def get_llama_pipeline(model_id: str, token: str) -> Any: | |
""" | |
Returns a cached LLaMA text-generation pipeline or loads a new one. | |
Args: | |
model_id (str): Hugging Face model ID. | |
token (str): Hugging Face token. | |
Returns: | |
Any: A Hugging Face text-generation pipeline. | |
""" | |
if model_id in LLAMA_PIPELINES: | |
return LLAMA_PIPELINES[model_id] | |
logging.info(f"Loading LLaMA model from {model_id}...") | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
use_auth_token=token, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True, | |
) | |
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
LLAMA_PIPELINES[model_id] = text_pipeline | |
return text_pipeline | |
def get_musicgen_model(model_key: str = "facebook/musicgen-large") -> Tuple[Any, Any]: | |
""" | |
Returns a cached MusicGen model and processor, or loads new ones. | |
Args: | |
model_key (str): Hugging Face model key (default is 'facebook/musicgen-large'). | |
Returns: | |
Tuple[Any, Any]: The MusicGen model and its processor. | |
""" | |
if model_key in MUSICGEN_MODELS: | |
return MUSICGEN_MODELS[model_key] | |
logging.info(f"Loading MusicGen model from {model_key}...") | |
model = MusicgenForConditionalGeneration.from_pretrained(model_key) | |
processor = AutoProcessor.from_pretrained(model_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
MUSICGEN_MODELS[model_key] = (model, processor) | |
return model, processor | |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC") -> TTS: | |
""" | |
Returns a cached TTS model or loads a new one. | |
Args: | |
model_name (str): Identifier for the TTS model. | |
Returns: | |
TTS: A Coqui TTS model. | |
""" | |
if model_name in TTS_MODELS: | |
return TTS_MODELS[model_name] | |
logging.info(f"Loading TTS model: {model_name}...") | |
tts_model = TTS(model_name) | |
TTS_MODELS[model_name] = tts_model | |
return tts_model | |
def get_sound_design_pipeline(model_name: str, token: str) -> Any: | |
""" | |
Returns a cached DiffusionPipeline for sound design, or loads a new one. | |
Raises an error if diffusers version is less than 0.21.0. | |
Args: | |
model_name (str): The model name to load. | |
token (str): Hugging Face token. | |
Returns: | |
Any: A DiffusionPipeline for sound design. | |
Raises: | |
ValueError: If diffusers version is lower than 0.21.0. | |
""" | |
if version.parse(diffusers.__version__) < version.parse("0.21.0"): | |
raise ValueError("AudioLDM2 requires diffusers>=0.21.0. Please upgrade your diffusers package.") | |
if model_name in SOUND_DESIGN_PIPELINES: | |
return SOUND_DESIGN_PIPELINES[model_name] | |
logging.info(f"Loading sound design pipeline from {model_name}...") | |
pipe = DiffusionPipeline.from_pretrained( | |
model_name, | |
pipeline_class=AudioLDMPipeline, | |
use_auth_token=token | |
) | |
SOUND_DESIGN_PIPELINES[model_name] = pipe | |
return pipe | |
# --------------------------------------------------------------------- | |
# Script Generation Function | |
# --------------------------------------------------------------------- | |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int) -> Tuple[str, str, str]: | |
""" | |
Generates a voice-over script, sound design suggestions, and music ideas based on the user prompt. | |
Args: | |
user_prompt (str): The user-provided concept. | |
model_id (str): The LLaMA model ID. | |
token (str): Hugging Face token. | |
duration (int): The desired duration in seconds. | |
Returns: | |
Tuple[str, str, str]: Voice-over script, sound design suggestions, and music suggestions. | |
""" | |
try: | |
text_pipeline = get_llama_pipeline(model_id, token) | |
system_prompt = ( | |
"You are an expert radio imaging producer specializing in sound design and music. " | |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following:\n" | |
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'\n" | |
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'\n" | |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'" | |
) | |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:" | |
with torch.inference_mode(): | |
result = text_pipeline( | |
combined_prompt, | |
max_new_tokens=300, | |
do_sample=True, | |
temperature=0.8 | |
) | |
generated_text = result[0]["generated_text"] | |
if "Output:" in generated_text: | |
generated_text = generated_text.split("Output:")[-1].strip() | |
# Extract sections using regex | |
pattern = r"Voice-Over Script:\s*(.*?)\s*Sound Design Suggestions:\s*(.*?)\s*Music Suggestions:\s*(.*)" | |
match = re.search(pattern, generated_text, re.DOTALL) | |
if match: | |
voice_script, sound_design, music_suggestions = (grp.strip() for grp in match.groups()) | |
else: | |
voice_script = "No voice-over script found." | |
sound_design = "No sound design suggestions found." | |
music_suggestions = "No music suggestions found." | |
return voice_script, sound_design, music_suggestions | |
except Exception as e: | |
logging.exception("Error generating script") | |
return f"Error generating script: {e}", "", "" | |
# --------------------------------------------------------------------- | |
# Voice-Over Generation Function | |
# --------------------------------------------------------------------- | |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC") -> Union[str, Any]: | |
""" | |
Generates a voice-over audio file from a script using Coqui TTS. | |
Args: | |
script (str): The voice-over script. | |
tts_model_name (str): The TTS model name. | |
Returns: | |
Union[str, Any]: The file path to the generated .wav file or an error message. | |
""" | |
try: | |
if not script.strip(): | |
return "Error: No script provided." | |
cleaned_script = clean_text(script) | |
tts_model = get_tts_model(tts_model_name) | |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav") | |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path) | |
return output_path | |
except Exception as e: | |
logging.exception("Error generating voice") | |
return f"Error generating voice: {e}" | |
# --------------------------------------------------------------------- | |
# Music Generation Function | |
# --------------------------------------------------------------------- | |
def generate_music(prompt: str, audio_length: int) -> Union[str, Any]: | |
""" | |
Generates a music track using the MusicGen model based on the prompt. | |
Args: | |
prompt (str): Music suggestion prompt. | |
audio_length (int): Number of tokens determining audio length. | |
Returns: | |
Union[str, Any]: The file path to the generated .wav file or an error message. | |
""" | |
try: | |
if not prompt.strip(): | |
return "Error: No music suggestion provided." | |
model_key = "facebook/musicgen-large" | |
musicgen_model, musicgen_processor = get_musicgen_model(model_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device) | |
with torch.inference_mode(): | |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) | |
audio_data = outputs[0, 0].cpu().numpy() | |
# Normalize audio data to 16-bit integer range | |
normalized_audio = (audio_data / np.max(np.abs(audio_data)) * 32767).astype("int16") | |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav") | |
write(output_path, 44100, normalized_audio) | |
return output_path | |
except Exception as e: | |
logging.exception("Error generating music") | |
return f"Error generating music: {e}" | |
# --------------------------------------------------------------------- | |
# Sound Design Generation Function | |
# --------------------------------------------------------------------- | |
def generate_sound_design(prompt: str) -> Union[str, Any]: | |
""" | |
Generates a sound design audio file using AudioLDM 2 based on the prompt. | |
Args: | |
prompt (str): Sound design prompt. | |
Returns: | |
Union[str, Any]: The file path to the generated .wav file or an error message. | |
""" | |
try: | |
if not prompt.strip(): | |
return "Error: No sound design suggestion provided." | |
pipe = get_sound_design_pipeline("cvssp/audioldm2", HF_TOKEN) | |
result = pipe(prompt) # Expected to return a dict with key 'audios' | |
audio_samples = result["audios"][0] | |
normalized_audio = (audio_samples / np.max(np.abs(audio_samples)) * 32767).astype("int16") | |
output_path = os.path.join(tempfile.gettempdir(), "sound_design_generated.wav") | |
write(output_path, 44100, normalized_audio) | |
return output_path | |
except Exception as e: | |
logging.exception("Error generating sound design") | |
return f"Error generating sound design: {e}" | |
# --------------------------------------------------------------------- | |
# Audio Blending Function | |
# --------------------------------------------------------------------- | |
def blend_audio(voice_path: str, sound_effect_path: str, music_path: str, ducking: bool, duck_level: int = 10) -> Union[str, Any]: | |
""" | |
Blends three audio files (voice, sound design, and music) by: | |
- Looping/trimming music and sound design to match voice duration. | |
- Optionally applying ducking to background tracks. | |
- Overlaying the voice on top of the background. | |
Args: | |
voice_path (str): Path to the voice audio file. | |
sound_effect_path (str): Path to the sound design audio file. | |
music_path (str): Path to the music audio file. | |
ducking (bool): Whether to apply ducking. | |
duck_level (int): Amount of attenuation in dB. | |
Returns: | |
Union[str, Any]: The file path to the blended .wav file or an error message. | |
""" | |
try: | |
for path in [voice_path, sound_effect_path, music_path]: | |
if not os.path.isfile(path): | |
return f"Error: Missing audio file for {path}" | |
# Load audio segments | |
voice = AudioSegment.from_wav(voice_path) | |
music = AudioSegment.from_wav(music_path) | |
sound_effect = AudioSegment.from_wav(sound_effect_path) | |
voice_len = len(voice) # duration in milliseconds | |
# Loop or trim music to match voice duration using pydub multiplication | |
if len(music) < voice_len: | |
repeats = math.ceil(voice_len / len(music)) | |
music = (music * repeats)[:voice_len] | |
else: | |
music = music[:voice_len] | |
# Loop or trim sound design to match voice duration | |
if len(sound_effect) < voice_len: | |
repeats = math.ceil(voice_len / len(sound_effect)) | |
sound_effect = (sound_effect * repeats)[:voice_len] | |
else: | |
sound_effect = sound_effect[:voice_len] | |
# Apply ducking if enabled | |
if ducking: | |
music = music - duck_level | |
sound_effect = sound_effect - duck_level | |
# Overlay music and sound effect for background | |
background = music.overlay(sound_effect) | |
# Overlay voice on top of background | |
final_audio = background.overlay(voice) | |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav") | |
final_audio.export(output_path, format="wav") | |
return output_path | |
except Exception as e: | |
logging.exception("Error blending audio") | |
return f"Error blending audio: {e}" | |
# --------------------------------------------------------------------- | |
# Gradio Interface | |
# --------------------------------------------------------------------- | |
with gr.Blocks(css=""" | |
/* Global Styles */ | |
body { | |
background: linear-gradient(135deg, #1d1f21, #3a3d41); | |
color: #f0f0f0; | |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
} | |
.header { | |
text-align: center; | |
padding: 2rem 1rem; | |
background: linear-gradient(90deg, #6a11cb, #2575fc); | |
border-radius: 0 0 20px 20px; | |
margin-bottom: 2rem; | |
} | |
.header h1 { | |
margin: 0; | |
font-size: 2.5rem; | |
} | |
.header p { | |
font-size: 1.2rem; | |
} | |
.gradio-container { | |
background: #2e2e2e; | |
border-radius: 10px; | |
padding: 1rem; | |
} | |
.tab-title { | |
font-size: 1.1rem; | |
font-weight: bold; | |
} | |
.footer { | |
text-align: center; | |
font-size: 0.9em; | |
margin-top: 2rem; | |
padding: 1rem; | |
color: #cccccc; | |
} | |
""") as demo: | |
# Custom Header | |
with gr.Row(elem_classes="header"): | |
gr.Markdown(""" | |
<h1>π§ Ai Ads Promo</h1> | |
<p>Your all-in-one AI solution for creating professional audio ads.</p> | |
""") | |
gr.Markdown(""" | |
**Welcome to Ai Ads Promo!** | |
This app helps you create amazing audio ads in just a few steps: | |
1. **Script Generation:** Provide your idea and get a voice-over script, sound design, and music suggestions. | |
2. **Voice Synthesis:** Convert the script into natural-sounding speech. | |
3. **Music Production:** Generate a custom music track. | |
4. **Sound Design:** Create creative sound effects. | |
5. **Audio Blending:** Seamlessly blend voice, music, and sound design (with optional ducking). | |
""") | |
with gr.Tabs(): | |
# Step 1: Script Generation | |
with gr.Tab("π Script Generation"): | |
with gr.Row(): | |
user_prompt = gr.Textbox( | |
label="Promo Ads Idea", | |
placeholder="E.g., A 30-second ad for a radio morning show...", | |
lines=2 | |
) | |
with gr.Row(): | |
llama_model_id = gr.Textbox( | |
label="LLaMA Model ID", | |
value="meta-llama/Meta-Llama-3-8B-Instruct", | |
placeholder="Enter a valid Hugging Face model ID" | |
) | |
duration = gr.Slider( | |
label="Desired Ad Duration (seconds)", | |
minimum=15, | |
maximum=60, | |
step=15, | |
value=30 | |
) | |
generate_script_button = gr.Button("Generate Script", variant="primary") | |
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False) | |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False) | |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False) | |
generate_script_button.click( | |
fn=lambda prompt, model_id, dur: generate_script(prompt, model_id, HF_TOKEN, dur), | |
inputs=[user_prompt, llama_model_id, duration], | |
outputs=[script_output, sound_design_output, music_suggestion_output], | |
) | |
# Step 2: Voice Synthesis | |
with gr.Tab("π€ Voice Synthesis"): | |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.") | |
selected_tts_model = gr.Dropdown( | |
label="TTS Model", | |
choices=[ | |
"tts_models/en/ljspeech/tacotron2-DDC", | |
"tts_models/en/ljspeech/vits", | |
"tts_models/en/sam/tacotron-DDC", | |
], | |
value="tts_models/en/ljspeech/tacotron2-DDC", | |
multiselect=False | |
) | |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary") | |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath") | |
generate_voice_button.click( | |
fn=lambda script, tts_model: generate_voice(script, tts_model), | |
inputs=[script_output, selected_tts_model], | |
outputs=voice_audio_output, | |
) | |
# Step 3: Music Production | |
with gr.Tab("πΆ Music Production"): | |
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.") | |
audio_length = gr.Slider( | |
label="Music Length (tokens)", | |
minimum=128, | |
maximum=1024, | |
step=64, | |
value=512, | |
info="Increase tokens for longer audio (inference time may vary)." | |
) | |
generate_music_button = gr.Button("Generate Music", variant="primary") | |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath") | |
generate_music_button.click( | |
fn=lambda music_prompt, length: generate_music(music_prompt, length), | |
inputs=[music_suggestion_output, audio_length], | |
outputs=[music_output], | |
) | |
# Step 4: Sound Design Generation | |
with gr.Tab("π§ Sound Design Generation"): | |
gr.Markdown("Generate a creative sound design track based on the script's suggestions.") | |
generate_sound_design_button = gr.Button("Generate Sound Design", variant="primary") | |
sound_design_audio_output = gr.Audio(label="Generated Sound Design (WAV)", type="filepath") | |
generate_sound_design_button.click( | |
fn=generate_sound_design, | |
inputs=[sound_design_output], | |
outputs=[sound_design_audio_output], | |
) | |
# Step 5: Audio Blending (Voice + Sound Design + Music) | |
with gr.Tab("ποΈ Audio Blending"): | |
gr.Markdown("Blend your voice-over, sound design, and music track. Enable ducking to lower background audio during voice segments.") | |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True) | |
duck_level_slider = gr.Slider( | |
label="Ducking Level (dB attenuation)", | |
minimum=0, | |
maximum=20, | |
step=1, | |
value=10 | |
) | |
blend_button = gr.Button("Blend Audio", variant="primary") | |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath") | |
blend_button.click( | |
fn=blend_audio, | |
inputs=[voice_audio_output, sound_design_audio_output, music_output, ducking_checkbox, duck_level_slider], | |
outputs=blended_output | |
) | |
# Footer and Visitor Badge | |
gr.Markdown(""" | |
<div class="footer"> | |
<hr> | |
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a> | |
<br> | |
<small>Ai Ads Promo © 2025</small> | |
</div> | |
""") | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 1rem;"> | |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold"> | |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" alt="visitor badge"/> | |
</a> | |
</div> | |
""") | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |