import streamlit as st import random import spacy import requests from bs4 import BeautifulSoup import re import spacy import language_tool_python # Initialize LanguageTool tool = language_tool_python.LanguageToolPublicAPI('en-US') # Define the Streamlit app st.title("NLP Testing and Scoring App") # Web scraping and text cleaning entity = "Canada" prefix = "https://wiki.kidzsearch.com/wiki/" page = requests.get(f'{prefix}{entity}') res = BeautifulSoup(page.content, 'html.parser') text = [i.get_text() for i in res.find_all('p')] cleaned_text = ' '.join(text) cleaned_text = re.sub(r'[^a-zA-Z0-9.,]', ' ', cleaned_text) paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()] # Process text using SpaCy nlp = spacy.load("en_core_web_sm") doc = nlp(cleaned_text) sentences = [sent.text for sent in doc.sents] # Combine sentences into paragraphs paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)] class SubjectiveTest: def __init__(self, data, noOfQues): self.summary = data self.noOfQues = noOfQues self.nlp = spacy.load("en_core_web_sm") def adjust_question_pattern(self, entity_label, topic_placeholder=True): question_patterns = { "PERSON": ["Who is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"], "ORG": ["What is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"], "GPE": ["Tell me about {entity}", "Explain {entity}", "What do you know about {entity}", "Describe {entity}", "Where is {entity}"], "MONEY": ["How much is {entity}?", "Tell me the value of {entity}", "Explain the amount of {entity}"], "DATE": ["Why was {entity} important?", "Explain what happened on {entity}"], # Add more entity-label to question-pattern mappings as needed } if topic_placeholder: for key in question_patterns: question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]] return question_patterns.get(entity_label, ["Explain {entity} {topic}"]) def generate_test(self, topic=None): doc = self.nlp(self.summary) question_answer_dict = dict() for sentence in doc.sents: for ent in sentence.ents: entity_label = ent.label_ entity_text = ent.text question_patterns = self.adjust_question_pattern(entity_label, topic is not None) for pattern in question_patterns: question = pattern.format(entity=entity_text, topic=topic) if entity_label in question_answer_dict: question_answer_dict[entity_label].append(question) else: question_answer_dict[entity_label] = [question] questions = [] for entity_label, entity_questions in question_answer_dict.items(): entity_questions = entity_questions[:self.noOfQues] questions.extend(entity_questions) return questions # Example usage data = ' '.join(paragraphs) noOfQues = 5 subjective_generator = SubjectiveTest(data, noOfQues) question_list = subjective_generator.generate_test("") questions = [] for i, question in enumerate(question_list): if "Explain" not in question and len(tool.check(question)) == 0 and grammar_sense(question) == "Make Sense": questions.append(f"Question: {question}") scores = [] # Now, add a Streamlit UI for input and displaying scores st.subheader("Answer the following questions:") user_responses = {} for i, question in enumerate(questions): response = st.text_area(f"Question {i + 1}", key=f"response_{i}") user_responses[f"response_{i}"] = response if st.button("Calculate Scores"): for i in questions: res = user_responses[f"response_{i}"] # Simulate the scoring process, replace with your actual scoring logic score = random.randint(0, 100) scores.append(score) x = 0 new_scores = [] for i in scores: if i == 'N/A': scores.pop(x) scores.append(85) x = x + 1 else: x = x + 1 def calculate_average(numbers): if not numbers: return 0 # Return 0 for an empty list to avoid division by zero. total = sum(numbers) average = total / len(numbers) return average st.subheader(f'Your average score is {calculate_average(scores)}')