Spaces:
Runtime error
Runtime error
Commit
·
57e83ff
1
Parent(s):
a1f74de
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import streamlit as st
|
2 |
import random
|
3 |
import spacy
|
4 |
import requests
|
@@ -6,63 +5,22 @@ from bs4 import BeautifulSoup
|
|
6 |
import re
|
7 |
import spacy
|
8 |
import language_tool_python
|
9 |
-
import
|
10 |
-
from gradio_client import Client
|
11 |
-
|
12 |
-
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli"
|
13 |
-
headers = {"Authorization": "Bearer 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"}
|
14 |
-
|
15 |
-
def query(payload):
|
16 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
17 |
-
return response.json()
|
18 |
-
|
19 |
-
# Define the grammar_sense function
|
20 |
-
def grammar_sense(sentence):
|
21 |
-
sense = query({
|
22 |
-
"inputs": sentence,
|
23 |
-
"parameters": {"candidate_labels": ["Make Sense", "Not Make Sense"]},
|
24 |
-
})
|
25 |
-
grammar = query({
|
26 |
-
"inputs": sentence,
|
27 |
-
"parameters": {"candidate_labels": ["Correct Grammar", "Incorrect Grammar"]},
|
28 |
-
})
|
29 |
-
objects = ["Sense", "Grammar"]
|
30 |
-
ans = []
|
31 |
-
for i in objects:
|
32 |
-
if i == "Sense":
|
33 |
-
response_data = json.loads(json.dumps(sense))
|
34 |
-
labels = response_data['labels']
|
35 |
-
scores = response_data['scores']
|
36 |
-
index_of_highest_score = scores.index(max(scores))
|
37 |
-
highest_score_label = labels[index_of_highest_score]
|
38 |
-
ans.append(highest_score_label)
|
39 |
-
else:
|
40 |
-
response_data = json.loads(json.dumps(grammar))
|
41 |
-
labels = response_data['labels']
|
42 |
-
scores = response_data['scores']
|
43 |
-
index_of_highest_score = scores.index(max(scores))
|
44 |
-
highest_score_label = labels[index_of_highest_score]
|
45 |
-
ans.append(highest_score_label)
|
46 |
-
|
47 |
-
if not 'Not' in ans[0] and ans[1] == 'Correct Grammar':
|
48 |
-
return True
|
49 |
-
else:
|
50 |
-
return False
|
51 |
-
|
52 |
# Initialize LanguageTool
|
53 |
-
tool = language_tool_python.
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
# Web scraping and text cleaning
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
66 |
prefix = "https://wiki.kidzsearch.com/wiki/"
|
67 |
page = requests.get(f'{prefix}{entity}')
|
68 |
res = BeautifulSoup(page.content, 'html.parser')
|
@@ -74,13 +32,14 @@ cleaned_text = re.sub(r'[^a-zA-Z0-9.,]', ' ', cleaned_text)
|
|
74 |
paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()]
|
75 |
|
76 |
# Process text using SpaCy
|
77 |
-
nlp = spacy.load("
|
78 |
doc = nlp(cleaned_text)
|
79 |
|
80 |
sentences = [sent.text for sent in doc.sents]
|
81 |
|
82 |
# Combine sentences into paragraphs
|
83 |
paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)]
|
|
|
84 |
class SubjectiveTest:
|
85 |
|
86 |
def __init__(self, data, noOfQues):
|
@@ -90,11 +49,11 @@ class SubjectiveTest:
|
|
90 |
|
91 |
def adjust_question_pattern(self, entity_label, topic_placeholder=True):
|
92 |
question_patterns = {
|
93 |
-
"PERSON": ["Who is {entity}?", "Tell me about {entity}", "What do you know about {entity}"],
|
94 |
-
"ORG": ["What is {entity}?", "Tell me about {entity}", "What do you know about {entity}"],
|
95 |
-
"GPE": ["Tell me about {entity}", "What do you know about {entity}", "Where is {entity}"],
|
96 |
-
"MONEY": ["How much is {entity}?", "Tell me the value of {entity}"],
|
97 |
-
"DATE": ["Why was {entity} important?"],
|
98 |
# Add more entity-label to question-pattern mappings as needed
|
99 |
}
|
100 |
|
@@ -102,7 +61,7 @@ class SubjectiveTest:
|
|
102 |
for key in question_patterns:
|
103 |
question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]]
|
104 |
|
105 |
-
return question_patterns.get(entity_label, "Explain")
|
106 |
|
107 |
def generate_test(self, topic=None):
|
108 |
doc = self.nlp(self.summary)
|
@@ -112,7 +71,7 @@ class SubjectiveTest:
|
|
112 |
for ent in sentence.ents:
|
113 |
entity_label = ent.label_
|
114 |
entity_text = ent.text
|
115 |
-
question_patterns = self.adjust_question_pattern(entity_label,
|
116 |
for pattern in question_patterns:
|
117 |
question = pattern.format(entity=entity_text, topic=topic)
|
118 |
if entity_label in question_answer_dict:
|
@@ -124,81 +83,61 @@ class SubjectiveTest:
|
|
124 |
|
125 |
for entity_label, entity_questions in question_answer_dict.items():
|
126 |
entity_questions = entity_questions[:self.noOfQues]
|
127 |
-
|
128 |
-
continue
|
129 |
-
else:
|
130 |
-
questions.extend(entity_questions)
|
131 |
|
132 |
return questions
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
questions
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
else:
|
159 |
-
|
160 |
|
161 |
-
|
162 |
-
for i, question in enumerate(questions):
|
163 |
-
res = st.text_input(f'Q{i + 1}: {question}') # Get user input for each question
|
164 |
-
answers[f'Q{i + 1}'] = res # Store the user's answer
|
165 |
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
for
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
result = client.predict(
|
179 |
-
f'What would you rate this answer to the question: "{question}" as a percentage? Here is the answer: {res}. Make sure to write your answer as "Score" and then write your score of the response.',
|
180 |
-
0.9,
|
181 |
-
256,
|
182 |
-
0.9,
|
183 |
-
1.2,
|
184 |
-
api_name="/chat"
|
185 |
-
)
|
186 |
-
pattern = r'(\d+)%'
|
187 |
-
match = re.search(pattern, result)
|
188 |
-
if match:
|
189 |
-
score = int(match.group(1))
|
190 |
-
scores.append(score)
|
191 |
-
else:
|
192 |
-
scores.append(85)
|
193 |
-
|
194 |
-
def calculate_average(numbers):
|
195 |
-
if not numbers:
|
196 |
-
return 0 # Return 0 for an empty list to avoid division by zero.
|
197 |
-
|
198 |
-
total = sum(numbers)
|
199 |
-
average = total / len(numbers)
|
200 |
-
return average
|
201 |
-
|
202 |
-
# Calculate and display the average score
|
203 |
-
average_score = calculate_average(scores)
|
204 |
-
st.write(f'Your average score is {average_score}')
|
|
|
|
|
1 |
import random
|
2 |
import spacy
|
3 |
import requests
|
|
|
5 |
import re
|
6 |
import spacy
|
7 |
import language_tool_python
|
8 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Initialize LanguageTool
|
10 |
+
tool = language_tool_python.LanguageTool('en-US')
|
11 |
|
12 |
+
# Helper function to check grammar and sense
|
13 |
+
def grammar_sense(sentence):
|
14 |
+
sense = tool.correct(sentence)
|
15 |
+
grammar = "Correct Grammar" if not tool.check(sentence) else "Incorrect Grammar"
|
16 |
+
return "Make Sense" if "Not" not in sense and grammar == "Correct Grammar" else "Not Make Sense"
|
17 |
|
18 |
# Web scraping and text cleaning
|
19 |
+
Quiz_Gen = st.form("Quiz Generation")
|
20 |
+
Quiz_Gen.write("What topic do you want to get tested on?")
|
21 |
+
res = Quiz_Gen.text_box()
|
22 |
+
Quiz_Gen.form_submit_button("Submit")
|
23 |
+
entity = res
|
24 |
prefix = "https://wiki.kidzsearch.com/wiki/"
|
25 |
page = requests.get(f'{prefix}{entity}')
|
26 |
res = BeautifulSoup(page.content, 'html.parser')
|
|
|
32 |
paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()]
|
33 |
|
34 |
# Process text using SpaCy
|
35 |
+
nlp = spacy.load("en_core_web_lg")
|
36 |
doc = nlp(cleaned_text)
|
37 |
|
38 |
sentences = [sent.text for sent in doc.sents]
|
39 |
|
40 |
# Combine sentences into paragraphs
|
41 |
paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)]
|
42 |
+
|
43 |
class SubjectiveTest:
|
44 |
|
45 |
def __init__(self, data, noOfQues):
|
|
|
49 |
|
50 |
def adjust_question_pattern(self, entity_label, topic_placeholder=True):
|
51 |
question_patterns = {
|
52 |
+
"PERSON": ["Who is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"],
|
53 |
+
"ORG": ["What is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"],
|
54 |
+
"GPE": ["Tell me about {entity}", "Explain {entity}", "What do you know about {entity}", "Describe {entity}", "Where is {entity}"],
|
55 |
+
"MONEY": ["How much is {entity}?", "Tell me the value of {entity}", "Explain the amount of {entity}"],
|
56 |
+
"DATE": ["Why was {entity} important?", "Explain what happened on {entity}"],
|
57 |
# Add more entity-label to question-pattern mappings as needed
|
58 |
}
|
59 |
|
|
|
61 |
for key in question_patterns:
|
62 |
question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]]
|
63 |
|
64 |
+
return question_patterns.get(entity_label, ["Explain {entity} {topic}"])
|
65 |
|
66 |
def generate_test(self, topic=None):
|
67 |
doc = self.nlp(self.summary)
|
|
|
71 |
for ent in sentence.ents:
|
72 |
entity_label = ent.label_
|
73 |
entity_text = ent.text
|
74 |
+
question_patterns = self.adjust_question_pattern(entity_label, topic is not None)
|
75 |
for pattern in question_patterns:
|
76 |
question = pattern.format(entity=entity_text, topic=topic)
|
77 |
if entity_label in question_answer_dict:
|
|
|
83 |
|
84 |
for entity_label, entity_questions in question_answer_dict.items():
|
85 |
entity_questions = entity_questions[:self.noOfQues]
|
86 |
+
questions.extend(entity_questions)
|
|
|
|
|
|
|
87 |
|
88 |
return questions
|
89 |
|
90 |
+
# Example usage
|
91 |
+
data = ' '.join(paragraphs)
|
92 |
+
noOfQues = 5
|
93 |
+
|
94 |
+
subjective_generator = SubjectiveTest(data, noOfQues)
|
95 |
+
question_list = subjective_generator.generate_test("")
|
96 |
+
questions = []
|
97 |
+
Quiz = st.form("Quiz")
|
98 |
+
for i, question in enumerate(question_list):
|
99 |
+
if "Explain" not in question and len(tool.check(question)) == 0 and grammar_sense(question) == "Make Sense":
|
100 |
+
questions.append(f"Question: {question}")
|
101 |
+
scores = []
|
102 |
+
client = Client("https://billbojangeles2000-zephyr-7b-alpha-chatbot-karki.hf.space/")
|
103 |
+
for i in questions:
|
104 |
+
res = Quiz.text_input(i)
|
105 |
+
result = client.predict(
|
106 |
+
f'What would you rate this answer to the question :"{i}" as a percentage? Here is the answer: {res}. Make sure to write your answer as "Score" and then write your score of the response.', # Fixed formatting issue
|
107 |
+
0.9,
|
108 |
+
256,
|
109 |
+
0.9,
|
110 |
+
1.2,
|
111 |
+
api_name="/chat"
|
112 |
+
)
|
113 |
+
print(result)
|
114 |
+
pattern = r'(\d+)%'
|
115 |
+
|
116 |
+
match = re.search(pattern, result)
|
117 |
+
if match:
|
118 |
+
score = match.group(1)
|
119 |
+
scores.append(f'{int(score)}')
|
120 |
else:
|
121 |
+
scores.append(f'N/A')
|
122 |
|
123 |
+
Quiz_Gen.form_submit_button("Submit")
|
|
|
|
|
|
|
124 |
|
125 |
+
x = 0
|
126 |
+
new_scores = []
|
127 |
+
for i in scores:
|
128 |
+
if i == 'N/A':
|
129 |
+
scores.pop(x)
|
130 |
+
scores.append(85)
|
131 |
+
x = x+1
|
132 |
+
else:
|
133 |
+
x = x+1
|
134 |
|
135 |
+
def calculate_average(numbers):
|
136 |
+
if not numbers:
|
137 |
+
return 0 # Return 0 for an empty list to avoid division by zero.
|
138 |
+
|
139 |
+
total = sum(numbers)
|
140 |
+
average = total / len(numbers)
|
141 |
+
return average
|
142 |
+
|
143 |
+
st.write(f'Your average score is {calculate_average(scores)}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|