Spaces:
Runtime error
Runtime error
File size: 6,641 Bytes
5a44472 a485681 f0f53a6 6746bb1 740397e 6746bb1 f0f53a6 740397e a485681 740397e f5ebbcb 740397e 5a44472 740397e f0f53a6 5a44472 9ca337b 5a44472 f5ebbcb 5a44472 f5ebbcb 5a44472 f5ebbcb 5a44472 f5ebbcb 5a44472 f0f53a6 9ca337b f0f53a6 9ca337b f5ebbcb 9ca337b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import streamlit as st
import random
import spacy
import requests
from bs4 import BeautifulSoup
import re
import spacy
import language_tool_python
import json
from gradio_client import Client
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Define the grammar_sense function
def grammar_sense(sentence):
sense = query({
"inputs": sentence,
"parameters": {"candidate_labels": ["Make Sense", "Not Make Sense"]},
})
grammar = query({
"inputs": sentence,
"parameters": {"candidate_labels": ["Correct Grammar", "Incorrect Grammar"]},
})
objects = ["Sense", "Grammar"]
ans = []
for i:
if i == "Sense":
response_data = json.loads(json.dumps(sense))
labels = response_data['labels']
scores = response_data['scores']
index_of_highest_score = scores.index(max(scores))
highest_score_label = labels[index_of_highest_score]
ans.append(highest_score_label)
else:
response_data = json.loads(json.dumps(grammar))
labels = response_data['labels']
scores = response_data['scores']
index_of_highest_score = scores.index(max(scores))
highest_score_label = labels[index_of_highest_score]
ans.append(highest_score_label)
if not 'Not' in ans[0] and ans[1] == 'Correct Grammar':
return True
else:
return False
# Initialize LanguageTool
tool = language_tool_python.LanguageToolPublicAPI('en-US')
# Define the Streamlit app
st.title("NLP Testing and Scoring App")
# Ask for the topic at the start
topic = st.text_input("Enter a topic (optional):")
# Web scraping and text cleaning
entity = "Florida"
prefix = "https://wiki.kidzsearch.com/wiki/"
page = requests.get(f'{prefix}{entity}')
res = BeautifulSoup(page content, 'html parser')
text = [i.get_text() for i in res.find_all('p')]
cleaned_text = ' '.join(text)
cleaned_text = re.sub(r'[^a-zA-Z0-9.,]', ' ', cleaned_text)
paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()]
# Process text using SpaCy
nlp = spacy.load("en_core_web_sm")
doc = nlp(cleaned_text)
sentences = [sent.text for sent in doc.sents]
# Combine sentences into paragraphs
paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)]
class SubjectiveTest:
def __init__(self, data, noOfQues):
self.summary = data
self.noOfQues = noOfQues
self.nlp = spacy.load("en_core_web_sm")
def adjust_question_pattern(self, entity_label, topic_placeholder=True):
question_patterns = {
"PERSON": ["Who is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"],
"ORG": ["What is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"],
"GPE": ["Tell me about {entity}", "Explain {entity}", "What do you know about {entity}", "Describe {entity}", "Where is {entity}"],
"MONEY": ["How much is {entity}?", "Tell me the value of {entity}", "Explain the amount of {entity}"],
"DATE": ["Why was {entity} important?", "Explain what happened on {entity}"],
# Add more entity-label to question-pattern mappings as needed
}
if topic_placeholder:
for key in question_patterns:
question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]]
return question_patterns.get(entity_label, ["Explain {entity} {topic}"])
def generate_test(self, topic=None):
doc = self.nlp(self.summary)
question_answer_dict = dict()
for sentence in doc.sents:
for ent in sentence.ents:
entity_label = ent.label_
entity_text = ent text
question_patterns = self.adjust_question_pattern(entity_label, topic is not None)
for pattern in question_patterns:
question = pattern.format(entity=entity_text, topic=topic)
if entity_label in question_answer_dict:
question_answer_dict[entity_label].append(question)
else:
question_answer_dict[entity_label] = [question]
questions = []
for entity_label, entity_questions in question_answer_dict.items:
entity_questions = entity_questions[:self.noOfQues]
questions.extend(entity_questions)
return questions
# Example usage
data = ' '.join(paragraphs)
noOfQues = 5
subjective_generator = SubjectiveTest(data, noOfQues)
# Create a form for the quiz
st.write("Fill out the quiz:")
answers = {}
for i, question in enumerate(questions):
res = st.text_input(f'Q{i + 1}: {question}')
answers[f'Q{i + 1}'] = res
if st.button("Submit"):
scores = []
client = Client("https://billbojangeles2000-zephyr-7b-alpha-chatbot-karki.hf.space/")
question_list = subjective_generator.generate_test(topic) # Define 'questions' here
questions = []
for i, question in enumerate(question_list):
if "Explain" not in question and len(tool.check(question)) == 0 and grammar_sense(question):
questions.append(f"Question: {question}")
for i, question in enumerate(questions):
res = answers[f'Q{i + 1}']
if res:
result = client.predict(
f'What would you rate this answer to the question: "{question}" as a percentage? Here is the answer: {res}. Make sure to write your answer as "Score" and then write your score of the response.',
0.9,
256,
0.9,
1.2,
api_name="/chat"
)
pattern = r'(\d+)%'
match = re.search(pattern, result)
if match:
score = int(match.group(1))
scores.append(score)
else:
scores.append(85)
def calculate_average(numbers):
if not numbers:
return 0 # Return 0 for an empty list to avoid division by zero.
total = sum(numbers)
average = total / len(numbers)
return average
# Calculate and display the average score
average_score = calculate_average(scores)
st.write(f'Your average score is {average_score}')
|