Spaces:
Sleeping
Sleeping
bikas
commited on
Commit
·
7100792
1
Parent(s):
cd4de3a
update
Browse files- new_image.py +0 -143
new_image.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import pickle
|
4 |
-
import shutil
|
5 |
-
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
-
from mtcnn import MTCNN
|
8 |
-
from numpy import asarray
|
9 |
-
from keras.preprocessing import image
|
10 |
-
from keras_vggface.vggface import VGGFace
|
11 |
-
from keras_vggface.utils import preprocess_input
|
12 |
-
import tensorflow as tf
|
13 |
-
|
14 |
-
# Configure GPU memory growth for TensorFlow
|
15 |
-
physical_devices = tf.config.list_physical_devices('GPU')
|
16 |
-
if physical_devices:
|
17 |
-
for device in physical_devices:
|
18 |
-
tf.config.experimental.set_memory_growth(device, True)
|
19 |
-
|
20 |
-
def feature_extractor(img_path):
|
21 |
-
model = VGGFace(model='resnet50', include_top=False, input_shape=(224, 224, 3), pooling='avg')
|
22 |
-
img = image.load_img(img_path, target_size=(224, 224))
|
23 |
-
img_array = image.img_to_array(img)
|
24 |
-
expanded_img = np.expand_dims(img_array, axis=0)
|
25 |
-
preprocessed_img = preprocess_input(expanded_img)
|
26 |
-
result = model.predict(preprocessed_img).flatten()
|
27 |
-
return result
|
28 |
-
|
29 |
-
def extract_faces_mtcnn(input_folder, output_folder, required_size=(224, 224)):
|
30 |
-
detector = MTCNN()
|
31 |
-
# if not os.path.exists(output_folder):
|
32 |
-
# os.makedirs(output_folder)
|
33 |
-
os.makedirs(output_folder, exist_ok=True)
|
34 |
-
|
35 |
-
for filename in os.listdir(input_folder):
|
36 |
-
img_path = os.path.join(input_folder, filename)
|
37 |
-
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
|
38 |
-
|
39 |
-
if img is None:
|
40 |
-
print(f"Error reading image: {img_path}")
|
41 |
-
continue
|
42 |
-
|
43 |
-
print(img.shape)
|
44 |
-
|
45 |
-
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
46 |
-
clahe_image = clahe.apply(img)
|
47 |
-
ConvertedImage = cv2.cvtColor(clahe_image, cv2.COLOR_GRAY2BGR)
|
48 |
-
|
49 |
-
faces = detector.detect_faces(ConvertedImage)
|
50 |
-
if faces is None or not faces:
|
51 |
-
continue
|
52 |
-
else:
|
53 |
-
for i, face_info in enumerate(faces):
|
54 |
-
x, y, w, h = face_info['box']
|
55 |
-
x, y = max(x, 0), max(y, 0)
|
56 |
-
face = img[y:y + h, x:x + w]
|
57 |
-
image_obj = Image.fromarray(face)
|
58 |
-
image_obj = image_obj.resize(required_size)
|
59 |
-
face_array = asarray(image_obj)
|
60 |
-
face_filename = f"{filename}"
|
61 |
-
output_path = os.path.join(output_folder, face_filename)
|
62 |
-
cv2.imwrite(output_path, face_array)
|
63 |
-
|
64 |
-
def delete_files_in_folder(folder_path):
|
65 |
-
try:
|
66 |
-
files = os.listdir(folder_path)
|
67 |
-
for file_name in files:
|
68 |
-
file_path = os.path.join(folder_path, file_name)
|
69 |
-
if os.path.isfile(file_path):
|
70 |
-
os.remove(file_path)
|
71 |
-
except Exception as e:
|
72 |
-
print(f"An error occurred: {e}")
|
73 |
-
|
74 |
-
def new_pickle_file(new_image_dir, update_face_dir):
|
75 |
-
|
76 |
-
pickle_file_dir = "/home/bikas/Desktop/IR/pickle"
|
77 |
-
filenames_pickle_path = os.path.join(pickle_file_dir, 'FinalFilenames.pkl')
|
78 |
-
features_pickle_path = os.path.join(pickle_file_dir, 'FeatureEmbeddings.pkl')
|
79 |
-
|
80 |
-
# Initialize existing data
|
81 |
-
if os.path.exists(filenames_pickle_path) and os.path.exists(features_pickle_path):
|
82 |
-
existing_filenames = pickle.load(open(filenames_pickle_path, 'rb'))
|
83 |
-
existing_features = pickle.load(open(features_pickle_path, 'rb'))
|
84 |
-
else:
|
85 |
-
existing_filenames = []
|
86 |
-
existing_features = []
|
87 |
-
|
88 |
-
image_files = os.listdir(new_image_dir)
|
89 |
-
|
90 |
-
if len(image_files) == 0:
|
91 |
-
# No valid image files found in the directory.
|
92 |
-
return
|
93 |
-
|
94 |
-
# Filter out already processed files
|
95 |
-
new_files = [file for file in image_files if file not in existing_filenames]
|
96 |
-
|
97 |
-
if not new_files:
|
98 |
-
# All files have already been processed
|
99 |
-
return
|
100 |
-
|
101 |
-
extract_faces_mtcnn(new_image_dir, update_face_dir)
|
102 |
-
filenames = []
|
103 |
-
features = []
|
104 |
-
|
105 |
-
image_files = os.listdir(update_face_dir)
|
106 |
-
if len(image_files) == 0:
|
107 |
-
# No valid image files found in the update face directory.
|
108 |
-
return
|
109 |
-
|
110 |
-
# Filter out already processed files
|
111 |
-
new_files = [file for file in image_files if file not in existing_filenames]
|
112 |
-
|
113 |
-
if not new_files:
|
114 |
-
# All files have already been processed
|
115 |
-
return
|
116 |
-
|
117 |
-
for person_file_name in new_files:
|
118 |
-
filenames.append(person_file_name)
|
119 |
-
|
120 |
-
# Update the existing pickle files with new data
|
121 |
-
existing_filenames.extend(filenames)
|
122 |
-
|
123 |
-
for file in filenames:
|
124 |
-
features.append(feature_extractor(os.path.join(update_face_dir, file)))
|
125 |
-
|
126 |
-
# Convert features to numpy array
|
127 |
-
if existing_features:
|
128 |
-
existing_features = np.array(existing_features)
|
129 |
-
features = np.array(features)
|
130 |
-
updated_features = np.vstack((existing_features, features))
|
131 |
-
else:
|
132 |
-
updated_features = np.array(features)
|
133 |
-
|
134 |
-
pickle.dump(existing_filenames, open(filenames_pickle_path, 'wb'))
|
135 |
-
pickle.dump(updated_features, open(features_pickle_path, 'wb'))
|
136 |
-
|
137 |
-
# Clean up the new_pickle and new_extract_face directories
|
138 |
-
delete_files_in_folder(update_face_dir)
|
139 |
-
# Delete the directory and all its contents
|
140 |
-
# shutil.rmtree(update_face_dir)
|
141 |
-
|
142 |
-
# Example usage
|
143 |
-
new_pickle_file("/home/hajj_images", "new_extract_face")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|