Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import json | |
import pandas as pd | |
from docx import Document | |
from dotenv import load_dotenv | |
from openai import AzureOpenAI | |
# Load environment variables | |
load_dotenv() | |
# Azure OpenAI credentials | |
key = os.getenv("AZURE_OPENAI_API_KEY") | |
endpoint_url = "https://interview-key.openai.azure.com/" | |
api_version = "2024-05-01-preview" | |
deployment_id = "interview" | |
# Initialize Azure OpenAI client | |
client = AzureOpenAI( | |
api_version=api_version, | |
azure_endpoint=endpoint_url, | |
api_key=key | |
) | |
# Streamlit app layout | |
st.set_page_config(layout="wide") | |
# Add custom CSS for center alignment | |
st.markdown(""" | |
<style> | |
.centered-title { | |
text-align: center; | |
font-size: 2.5em; | |
margin-top: 0; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def extract_text_from_docx(docx_path): | |
doc = Document(docx_path) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
def extract_terms_from_contract(contract_text): | |
prompt = ( | |
"You are an AI tasked with analyzing a contract and extracting key terms and constraints. The contract contains " | |
"various sections and subsections with terms related to budget constraints, types of allowable work, timelines, " | |
"penalties, responsibilities, and other conditions for work execution. Your job is to extract these key terms and " | |
"structure them in a clear JSON format, reflecting the hierarchy of sections and subsections. " | |
"Ensure to capture all important constraints and conditions specified in the contract text. If a section or subsection " | |
"contains multiple terms, list them all.\n\n" | |
"Contract text:\n" | |
f"{contract_text}\n\n" | |
"Provide the extracted terms in JSON format." | |
) | |
try: | |
response = client.chat.completions.create( | |
model=deployment_id, | |
messages=[ | |
{"role": "system", "content": "You are an AI specialized in extracting structured data from text documents."}, | |
{"role": "user", "content": prompt}, | |
], | |
max_tokens=1250, | |
n=1, | |
stop=None, | |
temperature=0.1, | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
st.error(f"Error extracting terms from contract: {e}") | |
return None | |
def analyze_task_compliance(task_description, cost_estimate, contract_terms): | |
print("Task D: ", task_description, cost_estimate) | |
prompt = ( | |
"You are an AI tasked with analyzing a task description and its associated cost estimate for compliance with contract conditions. " | |
"Below are the key terms and constraints extracted from the contract, followed by a task description and its cost estimate. " | |
"Your job is to analyze each task description and specify if it violates any conditions from the contract. " | |
"If there are violations, list the reasons for each violation. Provide detailed answers and do not give only true or false answers.\n\n" | |
f"Contract terms:\n{json.dumps(contract_terms, indent=4)}\n\n" | |
f"Task description:\n{task_description}\n" | |
f"Cost estimate:\n{cost_estimate}\n\n" | |
"Provide the compliance analysis in a clear JSON format." | |
) | |
try: | |
response = client.chat.completions.create( | |
model=deployment_id, | |
messages=[ | |
{"role": "system", "content": "You are an AI specialized in analyzing text for compliance with specified conditions."}, | |
{"role": "user", "content": prompt}, | |
], | |
max_tokens=1250, | |
n=1, | |
stop=None, | |
temperature=0.1, | |
) | |
return json.loads(response.choices[0].message.content) | |
except Exception as e: | |
st.error(f"Error analyzing task compliance: {e}") | |
return None | |
def main(): | |
st.markdown("<h1 class='centered-title'>Contract Compliance Analyzer</h1>", unsafe_allow_html=True) | |
# Initialize session state | |
if 'contract_terms' not in st.session_state: | |
st.session_state.contract_terms = None | |
if 'compliance_results' not in st.session_state: | |
st.session_state.compliance_results = None | |
# File upload buttons one after another | |
docx_file = st.sidebar.file_uploader("Upload Contract Document (DOCX)", type="docx", key="docx_file") | |
data_file = st.sidebar.file_uploader("Upload Task Descriptions (XLSX or CSV)", type=["xlsx", "csv"], key="data_file") | |
submit_button = st.sidebar.button("Submit") | |
if submit_button and docx_file and data_file: | |
# Extract contract text and terms | |
contract_text = extract_text_from_docx(docx_file) | |
extracted_terms_json = extract_terms_from_contract(contract_text) | |
if extracted_terms_json is None: | |
return | |
try: | |
st.session_state.contract_terms = json.loads(extracted_terms_json) | |
except json.JSONDecodeError as e: | |
st.error(f"JSON decoding error: {e}") | |
return | |
# Read task descriptions and cost estimates from XLSX or CSV | |
if data_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
tasks_df = pd.read_excel(data_file) | |
else: | |
tasks_df = pd.read_csv(data_file) | |
compliance_results = [] | |
# Process tasks sequentially | |
for _, row in tasks_df.iterrows(): | |
result = analyze_task_compliance(row['Task Description'], row['Amount'], st.session_state.contract_terms) | |
if result is not None: | |
print(result) | |
compliance_results.append(result) | |
st.session_state.compliance_results = compliance_results | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.session_state.contract_terms: | |
st.write("Extracted Contract Terms:") | |
st.json(st.session_state.contract_terms) | |
# Download button for contract terms | |
st.download_button( | |
label="Download Contract Terms", | |
data=json.dumps(st.session_state.contract_terms, indent=4), | |
file_name="contract_terms.json", | |
mime="application/json" | |
) | |
with col2: | |
if st.session_state.compliance_results: | |
st.write("Compliance Results:") | |
st.json(st.session_state.compliance_results) | |
# Download button for compliance results | |
st.download_button( | |
label="Download Compliance Results", | |
data=json.dumps(st.session_state.compliance_results, indent=4), | |
file_name="compliance_results.json", | |
mime="application/json" | |
) | |
if __name__ == "__main__": | |
main() | |