Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from fastapi.responses import JSONResponse
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import logging
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Set the cache directory for Hugging Face
|
18 |
+
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
|
19 |
+
|
20 |
+
# Load model and tokenizer
|
21 |
+
model_name = "BIJOY087/Bangla_barta_shurkha_mobilebert"
|
22 |
+
try:
|
23 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
logger.info("Model and tokenizer loaded successfully")
|
26 |
+
except Exception as e:
|
27 |
+
logger.error(f"Failed to load model or tokenizer: {e}")
|
28 |
+
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
29 |
+
|
30 |
+
class TextRequest(BaseModel):
|
31 |
+
text: str
|
32 |
+
|
33 |
+
class BatchTextRequest(BaseModel):
|
34 |
+
texts: list[str]
|
35 |
+
|
36 |
+
# Regular expression to detect Bangla characters
|
37 |
+
bangla_regex = re.compile('[\u0980-\u09FF]')
|
38 |
+
|
39 |
+
def contains_bangla(text):
|
40 |
+
return bool(bangla_regex.search(text))
|
41 |
+
|
42 |
+
@app.post("/batch_predict/")
|
43 |
+
async def batch_predict(request: BatchTextRequest):
|
44 |
+
try:
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
# Prepare the batch results
|
48 |
+
results = []
|
49 |
+
|
50 |
+
for idx, text in enumerate(request.texts):
|
51 |
+
|
52 |
+
# Check if text contains Bangla characters
|
53 |
+
if not contains_bangla(text):
|
54 |
+
results.append({"id": idx + 1, "text": text, "prediction": "other"})
|
55 |
+
continue
|
56 |
+
|
57 |
+
# Encode and predict for texts containing Bangla characters
|
58 |
+
inputs = tokenizer.encode_plus(
|
59 |
+
text,
|
60 |
+
add_special_tokens=True,
|
61 |
+
max_length=64,
|
62 |
+
truncation=True,
|
63 |
+
padding='max_length',
|
64 |
+
return_attention_mask=True,
|
65 |
+
return_tensors='pt'
|
66 |
+
)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
70 |
+
prediction = torch.argmax(logits, dim=1).item()
|
71 |
+
label = "Spam" if prediction == 1 else "Ham"
|
72 |
+
results.append({"id": idx + 1, "text": text, "prediction": label})
|
73 |
+
|
74 |
+
logger.info(f"Batch prediction results: {results}")
|
75 |
+
return JSONResponse(content={"results": results}, media_type="application/json; charset=utf-8")
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
logger.error(f"Batch prediction failed: {e}")
|
79 |
+
raise HTTPException(status_code=500, detail="Batch prediction failed. Please try again.")
|
80 |
+
|
81 |
+
@app.get("/")
|
82 |
+
async def root():
|
83 |
+
return {"message": "Welcome to the MobileBERT API"}
|