Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers.activations import get_activation
|
8 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
9 |
+
|
10 |
+
|
11 |
+
st.title('GPT2:')
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
@st.cache(allow_output_mutation=True)
|
16 |
+
def get_model():
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/MASKGPT2")
|
18 |
+
model = AutoModelWithLMHead.from_pretrained("BigSalmon/MASKGPT2")
|
19 |
+
return model, tokenizer
|
20 |
+
|
21 |
+
model, tokenizer = get_model()
|
22 |
+
|
23 |
+
g = """
|
24 |
+
***
|
25 |
+
|
26 |
+
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
|
27 |
+
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
|
28 |
+
|
29 |
+
***
|
30 |
+
|
31 |
+
original:"""
|
32 |
+
|
33 |
+
with st.form(key='my_form'):
|
34 |
+
prompt = st.text_area(label='Enter sentence', value=g)
|
35 |
+
submit_button = st.form_submit_button(label='Submit')
|
36 |
+
|
37 |
+
if submit_button:
|
38 |
+
with torch.no_grad():
|
39 |
+
text = tokenizer.encode(prompt)
|
40 |
+
myinput, past_key_values = torch.tensor([text]), None
|
41 |
+
myinput = myinput
|
42 |
+
myinput= myinput.to(device)
|
43 |
+
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
|
44 |
+
logits = logits[0,-1]
|
45 |
+
probabilities = torch.nn.functional.softmax(logits)
|
46 |
+
best_logits, best_indices = logits.topk(300)
|
47 |
+
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
|
48 |
+
text.append(best_indices[0].item())
|
49 |
+
best_probabilities = probabilities[best_indices].tolist()
|
50 |
+
words = []
|
51 |
+
st.write(best_words)
|