Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "deepseek-ai/DeepSeek-R1"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
8 |
+
|
9 |
+
def respond(message, history: list[tuple[str, str]]):
|
10 |
+
# Prepare the conversation history
|
11 |
+
messages = []
|
12 |
+
for user_msg, assistant_msg in history:
|
13 |
+
if user_msg:
|
14 |
+
messages.append({"role": "user", "content": user_msg})
|
15 |
+
if assistant_msg:
|
16 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
messages.append({"role": "user", "content": message})
|
18 |
|
19 |
+
# Tokenize the input
|
20 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
21 |
|
22 |
+
# Generate the response
|
23 |
+
outputs = model.generate(inputs, max_length=2048, temperature=0.7, top_p=0.95, do_sample=True)
|
24 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
return response
|
|
|
27 |
|
28 |
+
# Custom ChatInterface with undo and retry buttons
|
29 |
+
def chat_interface(message, history):
|
30 |
+
return respond(message, history)
|
31 |
|
32 |
+
# Create the Gradio interface
|
|
|
|
|
33 |
demo = gr.ChatInterface(
|
34 |
+
fn=chat_interface,
|
35 |
+
retry_btn="Retry",
|
36 |
+
undo_btn="Undo",
|
37 |
+
clear_btn="Clear",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
|
|
|
40 |
if __name__ == "__main__":
|
41 |
+
demo.launch()
|