Bhaskar2611 commited on
Commit
90626fc
·
verified ·
1 Parent(s): fc79b7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -53
app.py CHANGED
@@ -1,64 +1,41 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load the model and tokenizer
5
+ model_name = "deepseek-ai/DeepSeek-R1"
6
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
8
+
9
+ def respond(message, history: list[tuple[str, str]]):
10
+ # Prepare the conversation history
11
+ messages = []
12
+ for user_msg, assistant_msg in history:
13
+ if user_msg:
14
+ messages.append({"role": "user", "content": user_msg})
15
+ if assistant_msg:
16
+ messages.append({"role": "assistant", "content": assistant_msg})
 
 
 
 
 
 
 
 
 
17
  messages.append({"role": "user", "content": message})
18
 
19
+ # Tokenize the input
20
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
21
 
22
+ # Generate the response
23
+ outputs = model.generate(inputs, max_length=2048, temperature=0.7, top_p=0.95, do_sample=True)
24
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
25
 
26
+ return response
 
27
 
28
+ # Custom ChatInterface with undo and retry buttons
29
+ def chat_interface(message, history):
30
+ return respond(message, history)
31
 
32
+ # Create the Gradio interface
 
 
33
  demo = gr.ChatInterface(
34
+ fn=chat_interface,
35
+ retry_btn="Retry",
36
+ undo_btn="Undo",
37
+ clear_btn="Clear",
 
 
 
 
 
 
 
 
 
38
  )
39
 
 
40
  if __name__ == "__main__":
41
+ demo.launch()