File size: 6,100 Bytes
2088584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938b45c
 
 
873eed7
938b45c
 
8257cac
2102f42
ea950ea
8f0b5ee
53cff8f
8f0b5ee
 
 
 
 
 
873eed7
 
 
938b45c
873eed7
 
 
 
938b45c
873eed7
938b45c
873eed7
938b45c
873eed7
 
 
 
 
 
938b45c
873eed7
 
 
 
938b45c
873eed7
 
 
 
938b45c
873eed7
2088584
873eed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4645b13
873eed7
 
938b45c
873eed7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# import gradio as gr
# from huggingface_hub import InferenceClient

# # Initialize the client with your desired model
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# # Define the system prompt as an AI Dermatologist
# def format_prompt(message, history):
#     prompt = "<s>"
#     # Start the conversation with a system message
#     prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with skin and hair care by only providing text and if user information is not provided related to skin or hair then ask what they want to know related to skin and hair.[/INST]"
#     for user_prompt, bot_response in history:
#         prompt += f"[INST] {user_prompt} [/INST]"
#         prompt += f" {bot_response}</s> "
#     prompt += f"[INST] {message} [/INST]"
#     return prompt

# # Function to generate responses with the AI Dermatologist context
# def generate(
#     prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
# ):
#     temperature = float(temperature)
#     if temperature < 1e-2:
#         temperature = 1e-2
#     top_p = float(top_p)

#     generate_kwargs = dict(
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         repetition_penalty=repetition_penalty,
#         do_sample=True,
#         seed=42,
#     )

#     formatted_prompt = format_prompt(prompt, history)

#     stream = client.text_generation(
#         formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
#     )
#     output = ""

#     for response in stream:
#         output += response.token.text
#         yield output
#     return output

# # Customizable input controls for the chatbot interface
# additional_inputs = [
#     gr.Slider(
#         label="Temperature",
#         value=0.9,
#         minimum=0.0,
#         maximum=1.0,
#         step=0.05,
#         interactive=True,
#         info="Higher values produce more diverse outputs",
#     ),
#     gr.Slider(
#         label="Max new tokens",
#         value=256,
#         minimum=0,
#         maximum=1048,
#         step=64,
#         interactive=True,
#         info="The maximum numbers of new tokens",
#     ),
#     gr.Slider(
#         label="Top-p (nucleus sampling)",
#         value=0.90,
#         minimum=0.0,
#         maximum=1,
#         step=0.05,
#         interactive=True,
#         info="Higher values sample more low-probability tokens",
#     ),
#     gr.Slider(
#         label="Repetition penalty",
#         value=1.2,
#         minimum=1.0,
#         maximum=2.0,
#         step=0.05,
#         interactive=True,
#         info="Penalize repeated tokens",
#     )
# ]

# # Define the chatbot interface with the starting system message as AI Dermatologist
# gr.ChatInterface(
#     fn=generate,
#     chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
#     additional_inputs=additional_inputs,
#     title="AI Dermatologist"
# ).launch(show_api=False)

# # Load your model after launching the interface
# gr.load("models/Bhaskar2611/Capstone").launch()
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the client with your desired model
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Define the system prompt as an AI Dermatologist
def format_prompt(message, history):
    prompt = "<s>"
    # Start the conversation with a system message
    prompt += "[INST] You are an AI Dermatologist chatbot designed to assist users with skin and hair care by only providing text and if user information is not provided related to skin or hair then ask what they want to know related to skin and hair.[/INST]"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

# Function to generate responses with the AI Dermatologist context
def generate(
    prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
    )
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

# Customizable input controls for the chatbot interface
Settings = [
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]
# Define the chatbot interface with the starting system message as AI Dermatologist
gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
    additional_inputs = Settings,
    title="AI Dermatologist"
).launch(show_api=False)

# Load your model after launching the interface
gr.load("models/Bhaskar2611/Capstone").launch()