File size: 17,055 Bytes
c6a2567
 
 
6e38f78
c6a2567
 
 
6e38f78
c6a2567
6e38f78
c6a2567
 
 
 
 
 
 
 
6e38f78
c6a2567
 
 
 
 
19d44c9
b0b6674
c6a2567
6e38f78
c6a2567
 
 
 
 
a4e6e48
 
c7b9343
c6a2567
 
 
 
6e38f78
c6a2567
 
 
 
6e38f78
c7b9343
 
 
 
 
 
 
c6a2567
 
 
 
 
 
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
 
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
c6a2567
81c6ca9
c6a2567
 
 
6e38f78
 
81c6ca9
c6a2567
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e6e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a2567
 
 
 
a4e6e48
c6a2567
a4e6e48
c6a2567
 
 
 
 
a4e6e48
 
 
 
 
c6a2567
 
 
 
 
 
 
 
 
 
 
 
 
a4e6e48
c6a2567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e6e48
c6a2567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e6e48
c6a2567
 
a4e6e48
c6a2567
 
 
 
 
 
 
 
 
a4e6e48
c6a2567
a4e6e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a2567
 
 
 
 
 
 
 
 
 
 
6e38f78
c6a2567
 
 
 
 
 
6e38f78
c6a2567
 
 
 
 
 
 
 
 
6e38f78
c6a2567
 
 
 
 
 
 
6e38f78
c6a2567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e38f78
c6a2567
 
c7b9343
 
 
 
20caa0b
ee4d989
20caa0b
c7b9343
 
20caa0b
c7b9343
 
 
ee4d989
c6a2567
 
 
a4e6e48
c7b9343
 
 
 
c6a2567
 
a4e6e48
c6a2567
81c6ca9
 
a4e6e48
81c6ca9
c6a2567
a4e6e48
c6a2567
 
 
 
c94e904
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#--------------------------------------------------------------------
#            DEPENDENCIAS
#--------------------------------------------------------------------
import os
from io import StringIO
import requests
import gradio as gr
import pandas as pd
import numpy as np
import openai
import tiktoken
#import streamlit as st
from openai.embeddings_utils import get_embedding, cosine_similarity
#from langchain.document_loaders import PyPDFLoader
#from langchain.text_splitter import CharacterTextSplitter
#from PyPDF2 import PdfReader, PdfFileReader
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import OpenAI, HuggingFaceHub
from langchain.chains.question_answering import load_qa_chain
#from htmlTemplates import css, bot_template, user_template
import json 
import ast 
#from langchain.schema.vectorstore import Document
from langchain.schema import Document
#import fitz  # PyMuPDF
#import pytesseract
#from PIL import Image
#from io import BytesIO
#import cv2
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime

#--------------------------------------------------------------------
#            LLAVES
#--------------------------------------------------------------------
openai.api_key = os.getenv("OPENAI_API_KEY")
api_key = os.getenv("OPENAI_API_KEY")
token = os.getenv("token")
headers = { 'Authorization': f'token {token}',
            'Accept': 'application/vnd.github.v3.raw' }

# Establece las credenciales y la API
credentials = os.getenv( "credentials" )
credentials =  json.loads( credentials )
gc = gspread.service_account_from_dict( credentials )
Google_URL = os.getenv( "Google_Sheet" )


#--------------------------------------------------------------------
#            CARGAR CSV EMBEDDINGS
#--------------------------------------------------------------------
#
url_tomos_conf_DPR = os.getenv("url_tomos_conf_DPR")
response_tomos_conf_DPR = requests.get( url_tomos_conf_DPR, headers = headers )
csv_content_tomos_conf_DPR = response_tomos_conf_DPR.text
tomos_conf_DPR = pd.read_csv(StringIO( csv_content_tomos_conf_DPR ))

#
url_tomos_conf_cita = os.getenv("url_tomos_conf_cita")
response_tomos_conf_cita = requests.get( url_tomos_conf_cita, headers = headers )
csv_content_tomos_conf_cita = response_tomos_conf_cita.text
tomos_conf_cita = pd.read_csv(StringIO( csv_content_tomos_conf_cita ))

#
url_df_tomos_1a28_01 = os.getenv("url_df_tomos_1a28_01")
response_df_tomos_1a28_01 = requests.get( url_df_tomos_1a28_01, headers = headers )
csv_content_df_tomos_1a28_01 = response_df_tomos_1a28_01.text
df_tomos_1a28_01 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_01 ))

#
url_df_tomos_1a28_02 = os.getenv("url_df_tomos_1a28_02")
response_df_tomos_1a28_02 = requests.get( url_df_tomos_1a28_02, headers = headers )
csv_content_df_tomos_1a28_02 = response_df_tomos_1a28_02.text
df_tomos_1a28_02 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_02 ))

#
url_df_tomos_1a28_03 = os.getenv("url_df_tomos_1a28_03")
response_df_tomos_1a28_03 = requests.get( url_df_tomos_1a28_03, headers = headers )
csv_content_df_tomos_1a28_03 = response_df_tomos_1a28_03.text
df_tomos_1a28_03 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_03 ))

#
url_df_tomos_1a28_04 = os.getenv("url_df_tomos_1a28_04")
response_df_tomos_1a28_04 = requests.get( url_df_tomos_1a28_04, headers = headers )
csv_content_df_tomos_1a28_04 = response_df_tomos_1a28_04.text
df_tomos_1a28_04 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_04 ))

#
url_df_tomos_1a28_05 = os.getenv("url_df_tomos_1a28_05")
response_df_tomos_1a28_05 = requests.get( url_df_tomos_1a28_05, headers = headers )
csv_content_df_tomos_1a28_05 = response_df_tomos_1a28_05.text
df_tomos_1a28_05 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_05 ))

#
url_df_tomos_1a28_06 = os.getenv("url_df_tomos_1a28_06")
response_df_tomos_1a28_06 = requests.get( url_df_tomos_1a28_06, headers = headers )
csv_content_df_tomos_1a28_06 = response_df_tomos_1a28_06.text
df_tomos_1a28_06 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_06 ))

#
url_df_tomos_1a28_07 = os.getenv("url_df_tomos_1a28_07")
response_df_tomos_1a28_07 = requests.get( url_df_tomos_1a28_07, headers = headers )
csv_content_df_tomos_1a28_07 = response_df_tomos_1a28_07.text
df_tomos_1a28_07 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_07 ))

#
url_df_tomos_1a28_08 = os.getenv("url_df_tomos_1a28_08")
response_df_tomos_1a28_08 = requests.get( url_df_tomos_1a28_08, headers = headers )
csv_content_df_tomos_1a28_08 = response_df_tomos_1a28_08.text
df_tomos_1a28_08 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_08 ))

#
url_df_tomos_1a28_09 = os.getenv("url_df_tomos_1a28_09")
response_df_tomos_1a28_09 = requests.get( url_df_tomos_1a28_09, headers = headers )
csv_content_df_tomos_1a28_09 = response_df_tomos_1a28_09.text
df_tomos_1a28_09 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_09 ))

#
df_tomos_1a28 = pd.concat([df_tomos_1a28_01, df_tomos_1a28_02], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_03], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_04], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_05], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_06], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_07], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_08], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_09], ignore_index = True)

#
url_tercer_req = os.getenv("url_tercer_req")
response_tercer_req = requests.get( url_tercer_req, headers = headers )
csv_content_tercer_req = response_tercer_req.text
tercer_req = pd.read_csv(StringIO( csv_content_tercer_req ))

#
url_seg_req = os.getenv("url_seg_req")
response_seg_req = requests.get( url_seg_req, headers = headers )
csv_content_seg_req = response_seg_req.text
seg_req = pd.read_csv(StringIO( csv_content_seg_req ))

#
url_primer_req = os.getenv("url_primer_req")
response_primer_req = requests.get( url_primer_req, headers = headers )
csv_content_primer_req = response_primer_req.text
primer_req = pd.read_csv(StringIO( csv_content_primer_req ))

#
url_primer1_req = os.getenv("url_primer1_req")
response_primer1_req = requests.get( url_primer1_req, headers = headers )
csv_content_primer1_req = response_primer1_req.text
primer1_req = pd.read_csv(StringIO( csv_content_primer1_req ))
primer1_req["Folder"] = "I. PRIMER REQUERIMIENTO (139)/2. Desahogo Reiteracion 1 139"

#
url_primer2_req = os.getenv("url_primer2_req")
response_primer2_req = requests.get( url_primer2_req, headers = headers )
csv_content_primer2_req = response_primer2_req.text
primer2_req = pd.read_csv(StringIO( csv_content_primer2_req ))
primer2_req["Folder"] = "I. PRIMER REQUERIMIENTO (139)/1. Desahogo RFI 139"

#---------------------------------------------------------------------------------------------------------------
#     UUUUPS LA COLUMNA EMBEDDINGS NO LA RECONOCE COSINESIMILARITY.. [tomos_conf_DPR, tomos_conf_cita]
#---------------------------------------------------------------------------------------------------------------
def clean_and_parse_embedding(embedding_str):
    # Extract the part between square brackets
    embedding_str = embedding_str.split('[')[-1].split(']')[0]
    # Now, you should have a clean string representation of the list
    embedding_list = ast.literal_eval(embedding_str)
    return [float(val) for val in embedding_list]

tomos_conf_DPR['Embedding'] = tomos_conf_DPR['Embedding'].apply(clean_and_parse_embedding)
tomos_conf_cita['Embedding'] = tomos_conf_cita['Embedding'].apply(clean_and_parse_embedding)
tercer_req['Embedding'] = tercer_req['Embedding'].apply(clean_and_parse_embedding)
seg_req['Embedding'] = seg_req['Embedding'].apply(clean_and_parse_embedding)
primer_req['Embedding'] = primer_req['Embedding'].apply(clean_and_parse_embedding)
primer1_req['Embedding'] = primer1_req['Embedding'].apply(clean_and_parse_embedding)
primer2_req['Embedding'] = primer2_req['Embedding'].apply(clean_and_parse_embedding)

#---------------------------------------------------------------------------------------------------------------
#     UUUUPS LA COLUMNA EMBEDDINGS NO LA RECONOCE COSINESIMILARITY.. [df_tomos_1a28]
#---------------------------------------------------------------------------------------------------------------
def parse_embedding(embedding_str):
    embedding_list = ast.literal_eval(embedding_str)
    return [float(val) for val in embedding_list]

df_tomos_1a28['Embedding'] = df_tomos_1a28['Embedding'].apply(parse_embedding)

#---------------------------------------------------------------------------------------------------------------
#     LISTA DE DF
#---------------------------------------------------------------------------------------------------------------
list_of_dfs = [tomos_conf_DPR, tomos_conf_cita, df_tomos_1a28, tercer_req, seg_req, primer_req, primer1_req, primer2_req] 

#--------------------------------------------------------------------
#     HACEMOS UNA PREGUNTA Y RANKEA CHUNKS
#--------------------------------------------------------------------
def buscar(busqueda, lista_de_datos):
    resultados = []  # Create an empty list to store individual DataFrame results
    busqueda_embed = get_embedding(busqueda, engine="text-embedding-ada-002")

    for datos in lista_de_datos:
        datos["similitud"] = datos['Embedding'].apply(lambda x: cosine_similarity(x, busqueda_embed))
        datos = datos.sort_values("similitud", ascending=False)
        resultados.append(datos[['PDFName', 'PageNumber', 'similitud', "PageText", "Folder"]])

    # Concatenate all individual DataFrames into a single DataFrame
    combined_result = pd.concat(resultados).sort_values("similitud", ascending=False).head(20)
    return combined_result

#--------------------------------------------------------------------
#     rank for ai
#--------------------------------------------------------------------
def buscar_ai(busqueda, lista_de_datos):
    resultados = []  # Create an empty list to store individual DataFrame results
    busqueda_embed = get_embedding(busqueda, engine="text-embedding-ada-002")

    for datos in lista_de_datos:
        datos["similitud"] = datos['Embedding'].apply(lambda x: cosine_similarity(x, busqueda_embed))
        datos = datos.sort_values("similitud", ascending=False)
        resultados.append(datos[['PDFName', 'PageNumber', 'similitud', "PageText", "Folder"]])

    # Concatenate all individual DataFrames into a single DataFrame
    combined_result = pd.concat(resultados).sort_values("similitud", ascending=False).head(10)
    return combined_result

#--------------------------------------------------------------------
#    saque n extraactos de ""
#--------------------------------------------------------------------
def count_text_extracted(pregunta):
    df = buscar(pregunta, list_of_dfs)
    pdf_counts = df.groupby(['Folder', 'PDFName'])['PageNumber'].count().reset_index()
    
    output_string = ""
    for idx, row in pdf_counts.iterrows():
        folder_name = row['Folder']
        pdf_name = row['PDFName']
        count = row['PageNumber']
        page_numbers = df[(df['PDFName'] == pdf_name) & (df['Folder'] == folder_name)]['PageNumber'].tolist()
        page_numbers_str = ', '.join(map(str, page_numbers))
        output_string += f"Usé el archivo '{pdf_name}' del folder '{folder_name}' {count} (vez/veces) al extraer el texto de las páginas {page_numbers_str}.\n\n"
    
    return output_string

#--------------------------------------------------------------------
#    file: texto
#--------------------------------------------------------------------

def print_pdf_info(pregunta):
    df = buscar(pregunta, list_of_dfs)
    
    output_string = ""  # Initialize an empty string to accumulate the output
    
    for _, row in df.iterrows():
        pdf_name = row['PDFName']
        page_number = row['PageNumber']
        page_text = row['PageText']
        
        # Split page_text into lines and add a tab to each line
        indented_page_text = '\n'.join(['\t' + line for line in page_text.split('\n')])
        
        # Append the formatted output to the output string
        output_string += f'De "{pdf_name}":\n \tPágina {page_number}:\n\t {indented_page_text}\n'
    
    return output_string

#--------------------------------------------------------------------
#    vector -> document
#-------------------------------------------------------------------
def vector_document(dataframe):
    string_vectors = dataframe["PageText"]
    documents = [Document(page_content=content, metadata={'id': i}) for i, content in enumerate(string_vectors)]
    return documents

#--------------------------------------------------------------------
#    AI QUESTION
#-------------------------------------------------------------------
def info_pdf(pregunta):
    df = buscar(pregunta, list_of_dfs)
    
    output_list = []  # Initialize an empty list to store the output
    
    for _, row in df.iterrows():
        pdf_name = row['PDFName']
        page_number = row['PageNumber']
        page_text = row['PageText']
        
        # Split page_text into lines and add a tab to each line
        indented_page_text = '\n'.join(['\t' + line for line in page_text.split('\n')])
        
        # Append the formatted output to the output list
        output_list.append(f'De "{pdf_name}": Página {page_number}: {indented_page_text}')
    
    return output_list

def get_completion_from_messages( messages, model = "gpt-3.5-turbo-16k", 
                                  temperature = 0, max_tokens = 4500 ): ##Check max_tokens 
    response = openai.ChatCompletion.create(
               model = model,
               messages = messages,
               temperature = temperature, 
               max_tokens = max_tokens, 
    )
    return response.choices[0].message["content"]

def get_topic( user_message ):
    #
    delimiter = "####"
    system_message = f"""
    Eres un abogado que trabaja en temas de competencia económica e investiga casos en México.
    Siempre intenarás responder en el mayor número posible de palabras.
    Las consultas o preguntas se delimitarán con los caracteres {delimiter}
    """
    #
    messages =  [  
    {'role':'system', 
     'content': system_message},    
    {'role':'user', 
     'content': f"{delimiter}{user_message}{delimiter}"},  
    ] 
    return get_completion_from_messages( messages )

def get_respuesta( user_message, informacion):
    #
    delimiter = "####"
    system_message = f"""
    Eres un abogado que trabaja en temas de competencia económica e investiga casos en México.
    Siempre intenarás responder en el mayor número posible de palabras.
    Las consultas o preguntas se delimitarán con los caracteres {delimiter}

    """
    #
    messages =  [  
    {'role':'system',
     'content': system_message},   
    {'role':'user',
     'content': f"""
    {delimiter} 
    Estás intentando recopilar información relevante para tu caso.
    Usa exclusivamente la información contenida en la siguiente lista: 
    {informacion} 

    para responder sin límite de palabras lo siguiente: {user_message}
    Responde de forma detallada.
    {delimiter}
    """},   
    ]
    #
    return get_completion_from_messages(messages)

def update_records( user_message ):
    #
    sht = gc.open_by_url(Google_URL)
    #
    sht.worksheet("Hoja 2").get_all_records()
    #
    sht.worksheet("Hoja 2").update_cell( len( sht.worksheet("Hoja 2").get_all_records()[:] ) + 2 , 
                            1 , datetime.now().strftime("%m/%d/%Y, %H:%M:%S") )
    #
    sht.worksheet("Hoja 2").update_cell( len( sht.worksheet("Hoja 2").get_all_records()[:] ) + 1 , 
                            2 , user_message )

def chat(user_message_1):
    #
    norma_y_tema_response_1 = get_topic(user_message_1)
    norma_y_tema_response_1 += 'Todos'
    uno = buscar_ai(user_message_1, list_of_dfs)
    lista_info = uno['PageText'].tolist()
    #
    # Save Question and date time
    update_records( user_message_1 )
    #
    return get_respuesta(user_message_1, lista_info)

# Modify your existing code
with gr.Blocks() as demo:
    txt = gr.Textbox(label="Texto", lines=2)
    btn = gr.Button(value="Listo")
    txt_2 = gr.Textbox(value="", label="Donde (top 20):")
    txt_3 = gr.Textbox(value="", label="Extractos (top 20):")
    txt_1 = gr.Textbox(value="", label="Respuesta IA:")
    btn.click(chat, inputs=[txt], outputs=[txt_1])
    btn.click(count_text_extracted, inputs=[txt], outputs=[txt_2])
    btn.click(print_pdf_info, inputs=[txt], outputs=[txt_3])

if __name__ == "__main__":
    demo.launch(share=True)