File size: 17,055 Bytes
c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 19d44c9 b0b6674 c6a2567 6e38f78 c6a2567 a4e6e48 c7b9343 c6a2567 6e38f78 c6a2567 6e38f78 c7b9343 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 c6a2567 81c6ca9 c6a2567 6e38f78 81c6ca9 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 a4e6e48 c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 6e38f78 c6a2567 c7b9343 20caa0b ee4d989 20caa0b c7b9343 20caa0b c7b9343 ee4d989 c6a2567 a4e6e48 c7b9343 c6a2567 a4e6e48 c6a2567 81c6ca9 a4e6e48 81c6ca9 c6a2567 a4e6e48 c6a2567 c94e904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
#--------------------------------------------------------------------
# DEPENDENCIAS
#--------------------------------------------------------------------
import os
from io import StringIO
import requests
import gradio as gr
import pandas as pd
import numpy as np
import openai
import tiktoken
#import streamlit as st
from openai.embeddings_utils import get_embedding, cosine_similarity
#from langchain.document_loaders import PyPDFLoader
#from langchain.text_splitter import CharacterTextSplitter
#from PyPDF2 import PdfReader, PdfFileReader
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import OpenAI, HuggingFaceHub
from langchain.chains.question_answering import load_qa_chain
#from htmlTemplates import css, bot_template, user_template
import json
import ast
#from langchain.schema.vectorstore import Document
from langchain.schema import Document
#import fitz # PyMuPDF
#import pytesseract
#from PIL import Image
#from io import BytesIO
#import cv2
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime
#--------------------------------------------------------------------
# LLAVES
#--------------------------------------------------------------------
openai.api_key = os.getenv("OPENAI_API_KEY")
api_key = os.getenv("OPENAI_API_KEY")
token = os.getenv("token")
headers = { 'Authorization': f'token {token}',
'Accept': 'application/vnd.github.v3.raw' }
# Establece las credenciales y la API
credentials = os.getenv( "credentials" )
credentials = json.loads( credentials )
gc = gspread.service_account_from_dict( credentials )
Google_URL = os.getenv( "Google_Sheet" )
#--------------------------------------------------------------------
# CARGAR CSV EMBEDDINGS
#--------------------------------------------------------------------
#
url_tomos_conf_DPR = os.getenv("url_tomos_conf_DPR")
response_tomos_conf_DPR = requests.get( url_tomos_conf_DPR, headers = headers )
csv_content_tomos_conf_DPR = response_tomos_conf_DPR.text
tomos_conf_DPR = pd.read_csv(StringIO( csv_content_tomos_conf_DPR ))
#
url_tomos_conf_cita = os.getenv("url_tomos_conf_cita")
response_tomos_conf_cita = requests.get( url_tomos_conf_cita, headers = headers )
csv_content_tomos_conf_cita = response_tomos_conf_cita.text
tomos_conf_cita = pd.read_csv(StringIO( csv_content_tomos_conf_cita ))
#
url_df_tomos_1a28_01 = os.getenv("url_df_tomos_1a28_01")
response_df_tomos_1a28_01 = requests.get( url_df_tomos_1a28_01, headers = headers )
csv_content_df_tomos_1a28_01 = response_df_tomos_1a28_01.text
df_tomos_1a28_01 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_01 ))
#
url_df_tomos_1a28_02 = os.getenv("url_df_tomos_1a28_02")
response_df_tomos_1a28_02 = requests.get( url_df_tomos_1a28_02, headers = headers )
csv_content_df_tomos_1a28_02 = response_df_tomos_1a28_02.text
df_tomos_1a28_02 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_02 ))
#
url_df_tomos_1a28_03 = os.getenv("url_df_tomos_1a28_03")
response_df_tomos_1a28_03 = requests.get( url_df_tomos_1a28_03, headers = headers )
csv_content_df_tomos_1a28_03 = response_df_tomos_1a28_03.text
df_tomos_1a28_03 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_03 ))
#
url_df_tomos_1a28_04 = os.getenv("url_df_tomos_1a28_04")
response_df_tomos_1a28_04 = requests.get( url_df_tomos_1a28_04, headers = headers )
csv_content_df_tomos_1a28_04 = response_df_tomos_1a28_04.text
df_tomos_1a28_04 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_04 ))
#
url_df_tomos_1a28_05 = os.getenv("url_df_tomos_1a28_05")
response_df_tomos_1a28_05 = requests.get( url_df_tomos_1a28_05, headers = headers )
csv_content_df_tomos_1a28_05 = response_df_tomos_1a28_05.text
df_tomos_1a28_05 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_05 ))
#
url_df_tomos_1a28_06 = os.getenv("url_df_tomos_1a28_06")
response_df_tomos_1a28_06 = requests.get( url_df_tomos_1a28_06, headers = headers )
csv_content_df_tomos_1a28_06 = response_df_tomos_1a28_06.text
df_tomos_1a28_06 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_06 ))
#
url_df_tomos_1a28_07 = os.getenv("url_df_tomos_1a28_07")
response_df_tomos_1a28_07 = requests.get( url_df_tomos_1a28_07, headers = headers )
csv_content_df_tomos_1a28_07 = response_df_tomos_1a28_07.text
df_tomos_1a28_07 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_07 ))
#
url_df_tomos_1a28_08 = os.getenv("url_df_tomos_1a28_08")
response_df_tomos_1a28_08 = requests.get( url_df_tomos_1a28_08, headers = headers )
csv_content_df_tomos_1a28_08 = response_df_tomos_1a28_08.text
df_tomos_1a28_08 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_08 ))
#
url_df_tomos_1a28_09 = os.getenv("url_df_tomos_1a28_09")
response_df_tomos_1a28_09 = requests.get( url_df_tomos_1a28_09, headers = headers )
csv_content_df_tomos_1a28_09 = response_df_tomos_1a28_09.text
df_tomos_1a28_09 = pd.read_csv(StringIO( csv_content_df_tomos_1a28_09 ))
#
df_tomos_1a28 = pd.concat([df_tomos_1a28_01, df_tomos_1a28_02], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_03], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_04], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_05], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_06], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_07], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_08], ignore_index = True)
df_tomos_1a28 = pd.concat([df_tomos_1a28, df_tomos_1a28_09], ignore_index = True)
#
url_tercer_req = os.getenv("url_tercer_req")
response_tercer_req = requests.get( url_tercer_req, headers = headers )
csv_content_tercer_req = response_tercer_req.text
tercer_req = pd.read_csv(StringIO( csv_content_tercer_req ))
#
url_seg_req = os.getenv("url_seg_req")
response_seg_req = requests.get( url_seg_req, headers = headers )
csv_content_seg_req = response_seg_req.text
seg_req = pd.read_csv(StringIO( csv_content_seg_req ))
#
url_primer_req = os.getenv("url_primer_req")
response_primer_req = requests.get( url_primer_req, headers = headers )
csv_content_primer_req = response_primer_req.text
primer_req = pd.read_csv(StringIO( csv_content_primer_req ))
#
url_primer1_req = os.getenv("url_primer1_req")
response_primer1_req = requests.get( url_primer1_req, headers = headers )
csv_content_primer1_req = response_primer1_req.text
primer1_req = pd.read_csv(StringIO( csv_content_primer1_req ))
primer1_req["Folder"] = "I. PRIMER REQUERIMIENTO (139)/2. Desahogo Reiteracion 1 139"
#
url_primer2_req = os.getenv("url_primer2_req")
response_primer2_req = requests.get( url_primer2_req, headers = headers )
csv_content_primer2_req = response_primer2_req.text
primer2_req = pd.read_csv(StringIO( csv_content_primer2_req ))
primer2_req["Folder"] = "I. PRIMER REQUERIMIENTO (139)/1. Desahogo RFI 139"
#---------------------------------------------------------------------------------------------------------------
# UUUUPS LA COLUMNA EMBEDDINGS NO LA RECONOCE COSINESIMILARITY.. [tomos_conf_DPR, tomos_conf_cita]
#---------------------------------------------------------------------------------------------------------------
def clean_and_parse_embedding(embedding_str):
# Extract the part between square brackets
embedding_str = embedding_str.split('[')[-1].split(']')[0]
# Now, you should have a clean string representation of the list
embedding_list = ast.literal_eval(embedding_str)
return [float(val) for val in embedding_list]
tomos_conf_DPR['Embedding'] = tomos_conf_DPR['Embedding'].apply(clean_and_parse_embedding)
tomos_conf_cita['Embedding'] = tomos_conf_cita['Embedding'].apply(clean_and_parse_embedding)
tercer_req['Embedding'] = tercer_req['Embedding'].apply(clean_and_parse_embedding)
seg_req['Embedding'] = seg_req['Embedding'].apply(clean_and_parse_embedding)
primer_req['Embedding'] = primer_req['Embedding'].apply(clean_and_parse_embedding)
primer1_req['Embedding'] = primer1_req['Embedding'].apply(clean_and_parse_embedding)
primer2_req['Embedding'] = primer2_req['Embedding'].apply(clean_and_parse_embedding)
#---------------------------------------------------------------------------------------------------------------
# UUUUPS LA COLUMNA EMBEDDINGS NO LA RECONOCE COSINESIMILARITY.. [df_tomos_1a28]
#---------------------------------------------------------------------------------------------------------------
def parse_embedding(embedding_str):
embedding_list = ast.literal_eval(embedding_str)
return [float(val) for val in embedding_list]
df_tomos_1a28['Embedding'] = df_tomos_1a28['Embedding'].apply(parse_embedding)
#---------------------------------------------------------------------------------------------------------------
# LISTA DE DF
#---------------------------------------------------------------------------------------------------------------
list_of_dfs = [tomos_conf_DPR, tomos_conf_cita, df_tomos_1a28, tercer_req, seg_req, primer_req, primer1_req, primer2_req]
#--------------------------------------------------------------------
# HACEMOS UNA PREGUNTA Y RANKEA CHUNKS
#--------------------------------------------------------------------
def buscar(busqueda, lista_de_datos):
resultados = [] # Create an empty list to store individual DataFrame results
busqueda_embed = get_embedding(busqueda, engine="text-embedding-ada-002")
for datos in lista_de_datos:
datos["similitud"] = datos['Embedding'].apply(lambda x: cosine_similarity(x, busqueda_embed))
datos = datos.sort_values("similitud", ascending=False)
resultados.append(datos[['PDFName', 'PageNumber', 'similitud', "PageText", "Folder"]])
# Concatenate all individual DataFrames into a single DataFrame
combined_result = pd.concat(resultados).sort_values("similitud", ascending=False).head(20)
return combined_result
#--------------------------------------------------------------------
# rank for ai
#--------------------------------------------------------------------
def buscar_ai(busqueda, lista_de_datos):
resultados = [] # Create an empty list to store individual DataFrame results
busqueda_embed = get_embedding(busqueda, engine="text-embedding-ada-002")
for datos in lista_de_datos:
datos["similitud"] = datos['Embedding'].apply(lambda x: cosine_similarity(x, busqueda_embed))
datos = datos.sort_values("similitud", ascending=False)
resultados.append(datos[['PDFName', 'PageNumber', 'similitud', "PageText", "Folder"]])
# Concatenate all individual DataFrames into a single DataFrame
combined_result = pd.concat(resultados).sort_values("similitud", ascending=False).head(10)
return combined_result
#--------------------------------------------------------------------
# saque n extraactos de ""
#--------------------------------------------------------------------
def count_text_extracted(pregunta):
df = buscar(pregunta, list_of_dfs)
pdf_counts = df.groupby(['Folder', 'PDFName'])['PageNumber'].count().reset_index()
output_string = ""
for idx, row in pdf_counts.iterrows():
folder_name = row['Folder']
pdf_name = row['PDFName']
count = row['PageNumber']
page_numbers = df[(df['PDFName'] == pdf_name) & (df['Folder'] == folder_name)]['PageNumber'].tolist()
page_numbers_str = ', '.join(map(str, page_numbers))
output_string += f"Usé el archivo '{pdf_name}' del folder '{folder_name}' {count} (vez/veces) al extraer el texto de las páginas {page_numbers_str}.\n\n"
return output_string
#--------------------------------------------------------------------
# file: texto
#--------------------------------------------------------------------
def print_pdf_info(pregunta):
df = buscar(pregunta, list_of_dfs)
output_string = "" # Initialize an empty string to accumulate the output
for _, row in df.iterrows():
pdf_name = row['PDFName']
page_number = row['PageNumber']
page_text = row['PageText']
# Split page_text into lines and add a tab to each line
indented_page_text = '\n'.join(['\t' + line for line in page_text.split('\n')])
# Append the formatted output to the output string
output_string += f'De "{pdf_name}":\n \tPágina {page_number}:\n\t {indented_page_text}\n'
return output_string
#--------------------------------------------------------------------
# vector -> document
#-------------------------------------------------------------------
def vector_document(dataframe):
string_vectors = dataframe["PageText"]
documents = [Document(page_content=content, metadata={'id': i}) for i, content in enumerate(string_vectors)]
return documents
#--------------------------------------------------------------------
# AI QUESTION
#-------------------------------------------------------------------
def info_pdf(pregunta):
df = buscar(pregunta, list_of_dfs)
output_list = [] # Initialize an empty list to store the output
for _, row in df.iterrows():
pdf_name = row['PDFName']
page_number = row['PageNumber']
page_text = row['PageText']
# Split page_text into lines and add a tab to each line
indented_page_text = '\n'.join(['\t' + line for line in page_text.split('\n')])
# Append the formatted output to the output list
output_list.append(f'De "{pdf_name}": Página {page_number}: {indented_page_text}')
return output_list
def get_completion_from_messages( messages, model = "gpt-3.5-turbo-16k",
temperature = 0, max_tokens = 4500 ): ##Check max_tokens
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = temperature,
max_tokens = max_tokens,
)
return response.choices[0].message["content"]
def get_topic( user_message ):
#
delimiter = "####"
system_message = f"""
Eres un abogado que trabaja en temas de competencia económica e investiga casos en México.
Siempre intenarás responder en el mayor número posible de palabras.
Las consultas o preguntas se delimitarán con los caracteres {delimiter}
"""
#
messages = [
{'role':'system',
'content': system_message},
{'role':'user',
'content': f"{delimiter}{user_message}{delimiter}"},
]
return get_completion_from_messages( messages )
def get_respuesta( user_message, informacion):
#
delimiter = "####"
system_message = f"""
Eres un abogado que trabaja en temas de competencia económica e investiga casos en México.
Siempre intenarás responder en el mayor número posible de palabras.
Las consultas o preguntas se delimitarán con los caracteres {delimiter}
"""
#
messages = [
{'role':'system',
'content': system_message},
{'role':'user',
'content': f"""
{delimiter}
Estás intentando recopilar información relevante para tu caso.
Usa exclusivamente la información contenida en la siguiente lista:
{informacion}
para responder sin límite de palabras lo siguiente: {user_message}
Responde de forma detallada.
{delimiter}
"""},
]
#
return get_completion_from_messages(messages)
def update_records( user_message ):
#
sht = gc.open_by_url(Google_URL)
#
sht.worksheet("Hoja 2").get_all_records()
#
sht.worksheet("Hoja 2").update_cell( len( sht.worksheet("Hoja 2").get_all_records()[:] ) + 2 ,
1 , datetime.now().strftime("%m/%d/%Y, %H:%M:%S") )
#
sht.worksheet("Hoja 2").update_cell( len( sht.worksheet("Hoja 2").get_all_records()[:] ) + 1 ,
2 , user_message )
def chat(user_message_1):
#
norma_y_tema_response_1 = get_topic(user_message_1)
norma_y_tema_response_1 += 'Todos'
uno = buscar_ai(user_message_1, list_of_dfs)
lista_info = uno['PageText'].tolist()
#
# Save Question and date time
update_records( user_message_1 )
#
return get_respuesta(user_message_1, lista_info)
# Modify your existing code
with gr.Blocks() as demo:
txt = gr.Textbox(label="Texto", lines=2)
btn = gr.Button(value="Listo")
txt_2 = gr.Textbox(value="", label="Donde (top 20):")
txt_3 = gr.Textbox(value="", label="Extractos (top 20):")
txt_1 = gr.Textbox(value="", label="Respuesta IA:")
btn.click(chat, inputs=[txt], outputs=[txt_1])
btn.click(count_text_extracted, inputs=[txt], outputs=[txt_2])
btn.click(print_pdf_info, inputs=[txt], outputs=[txt_3])
if __name__ == "__main__":
demo.launch(share=True) |