Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 4,865 Bytes
			
			| 2d438a0 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | # Modified from transformers.models.xlm_roberta.modeling_xlm_roberta
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['XLMRoberta', 'xlm_roberta_large']
class SelfAttention(nn.Module):
    def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.eps = eps
        # layers
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.dropout = nn.Dropout(dropout)
    def forward(self, x, mask):
        """
        x:   [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
        # compute query, key, value
        q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
        k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
        v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
        # compute attention
        p = self.dropout.p if self.training else 0.0
        x = F.scaled_dot_product_attention(q, k, v, mask, p)
        x = x.permute(0, 2, 1, 3).reshape(b, s, c)
        # output
        x = self.o(x)
        x = self.dropout(x)
        return x
class AttentionBlock(nn.Module):
    def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.post_norm = post_norm
        self.eps = eps
        # layers
        self.attn = SelfAttention(dim, num_heads, dropout, eps)
        self.norm1 = nn.LayerNorm(dim, eps=eps)
        self.ffn = nn.Sequential(
            nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim),
            nn.Dropout(dropout))
        self.norm2 = nn.LayerNorm(dim, eps=eps)
    def forward(self, x, mask):
        if self.post_norm:
            x = self.norm1(x + self.attn(x, mask))
            x = self.norm2(x + self.ffn(x))
        else:
            x = x + self.attn(self.norm1(x), mask)
            x = x + self.ffn(self.norm2(x))
        return x
class XLMRoberta(nn.Module):
    """
    XLMRobertaModel with no pooler and no LM head.
    """
    def __init__(self,
                 vocab_size=250002,
                 max_seq_len=514,
                 type_size=1,
                 pad_id=1,
                 dim=1024,
                 num_heads=16,
                 num_layers=24,
                 post_norm=True,
                 dropout=0.1,
                 eps=1e-5):
        super().__init__()
        self.vocab_size = vocab_size
        self.max_seq_len = max_seq_len
        self.type_size = type_size
        self.pad_id = pad_id
        self.dim = dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.post_norm = post_norm
        self.eps = eps
        # embeddings
        self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id)
        self.type_embedding = nn.Embedding(type_size, dim)
        self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id)
        self.dropout = nn.Dropout(dropout)
        # blocks
        self.blocks = nn.ModuleList([
            AttentionBlock(dim, num_heads, post_norm, dropout, eps)
            for _ in range(num_layers)
        ])
        # norm layer
        self.norm = nn.LayerNorm(dim, eps=eps)
    def forward(self, ids):
        """
        ids: [B, L] of torch.LongTensor.
        """
        b, s = ids.shape
        mask = ids.ne(self.pad_id).long()
        # embeddings
        x = self.token_embedding(ids) + \
            self.type_embedding(torch.zeros_like(ids)) + \
            self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask)
        if self.post_norm:
            x = self.norm(x)
        x = self.dropout(x)
        # blocks
        mask = torch.where(
            mask.view(b, 1, 1, s).gt(0), 0.0,
            torch.finfo(x.dtype).min)
        for block in self.blocks:
            x = block(x, mask)
        # output
        if not self.post_norm:
            x = self.norm(x)
        return x
def xlm_roberta_large(pretrained=False,
                      return_tokenizer=False,
                      device='cpu',
                      **kwargs):
    """
    XLMRobertaLarge adapted from Huggingface.
    """
    # params
    cfg = dict(
        vocab_size=250002,
        max_seq_len=514,
        type_size=1,
        pad_id=1,
        dim=1024,
        num_heads=16,
        num_layers=24,
        post_norm=True,
        dropout=0.1,
        eps=1e-5)
    cfg.update(**kwargs)
    # init a model on device
    with torch.device(device):
        model = XLMRoberta(**cfg)
    return model
 | 
