Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load your model and tokenizer
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("Behathenimro/mediQ-chat")
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained("Behathenimro/mediQ-chat")
|
| 8 |
+
model.eval()
|
| 9 |
+
|
| 10 |
+
# Define chat function
|
| 11 |
+
def mediq_chat(message, history=[]):
|
| 12 |
+
# You can optionally join past conversation to provide more context
|
| 13 |
+
input_ids = tokenizer.encode(message, return_tensors="pt")
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
output = model.generate(
|
| 16 |
+
input_ids,
|
| 17 |
+
max_new_tokens=200,
|
| 18 |
+
do_sample=True,
|
| 19 |
+
temperature=0.7,
|
| 20 |
+
top_p=0.9
|
| 21 |
+
)
|
| 22 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 23 |
+
return response
|
| 24 |
+
|
| 25 |
+
# Create the Gradio chat interface
|
| 26 |
+
gr.ChatInterface(
|
| 27 |
+
fn=mediq_chat,
|
| 28 |
+
title="🧠 MediQ - Clinical Reasoning Chatbot",
|
| 29 |
+
description="Ask clinical questions. The model will respond based on its training.",
|
| 30 |
+
theme="default"
|
| 31 |
+
).launch()
|