Spaces:
Runtime error
Runtime error
import numpy as np | |
import cv2 | |
from PIL import Image | |
from typing import List | |
from skimage.metrics import structural_similarity as ssim | |
from skimage import io, color | |
ROUND_DIGIT=3 | |
DYN_SAMPLE_STEP=4 | |
NUM_ASPECT=5 | |
MSE_POINT_HIGH=3000 | |
MSE_POINT_MID=1000 | |
MSE_POINT_LOW=100 | |
class MetricMSE_dyn(): | |
def __init__(self) -> None: | |
""" | |
Initialize a class MetricMSE_dyn for testing dynamic degree of a given video. | |
""" | |
None | |
def evaluate(self, frame_list:List[Image.Image]): | |
""" | |
Calculate the MSE (Mean Squared Error) between frames sampled at regular intervals of a given video to test dynamic_degree, | |
then quantize the orginal output based on some predefined thresholds. | |
Args: | |
frame_list:List[Image.Image], frames of the video used in calculation. | |
Returns: | |
mse_avg: float, the computed MSE between frames sampled at regular intervals and then averaged among all the pairs. | |
quantized_ans: int, the quantized value of the above avg MSE scores based on pre-defined thresholds. | |
""" | |
mse_list=[] | |
sampled_list = frame_list[::DYN_SAMPLE_STEP] | |
for f_idx in range(len(sampled_list)-1): | |
imageA = cv2.cvtColor(np.array(sampled_list[f_idx]), cv2.COLOR_RGB2BGR) | |
imageB = cv2.cvtColor(np.array(sampled_list[f_idx+1]), cv2.COLOR_RGB2BGR) | |
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) | |
err /= float(imageA.shape[0] * imageA.shape[1]) | |
mse_value = err | |
mse_list.append(mse_value) | |
mse_avg=np.mean(mse_list) | |
quantized_ans=0 | |
if mse_avg >= MSE_POINT_HIGH: | |
quantized_ans=4 | |
elif mse_avg < MSE_POINT_HIGH and mse_avg >= MSE_POINT_MID: | |
quantized_ans=3 | |
elif mse_avg < MSE_POINT_MID and mse_avg >= MSE_POINT_LOW: | |
quantized_ans=2 | |
else: | |
quantized_ans=1 | |
return mse_avg, quantized_ans | |