Imag / src /videogen_hub /metrics /dino-sim_metric.py
Baraaqasem's picture
Upload 49 files
413d4d0 verified
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from typing import List
from torchvision.models import vit_b_16
import torchvision.transforms as transforms
ROUND_DIGIT=3
NUM_ASPECT=5
DINO_POINT_HIGH=0.97
DINO_POINT_MID=0.9
DINO_POINT_LOW=0.8
class MetricDINO_sim():
def __init__(self, device="cuda") -> None:
"""
Initialize a class MetricDINO_sim with the specified device for testing temporal consistency of a given video.
Args:
device (str, optional): The device on which the model will run. Defaults to "cuda".
"""
self.device = device
self.model = vit_b_16(pretrained=True)
self.model.to(self.device).eval()
self.preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def evaluate(self, frame_list:List[Image.Image]):
"""
Calculate the cosine similarity between the DINO features of adjacent frames of a given video to test temporal consistency,
then quantize the orginal output based on some predefined thresholds.
Args:
frame_list:List[Image.Image], frames of the video used in calculation.
Returns:
dino_frame_score: float, the computed DINO feature cosine similarity between each adjacent pair of frames and then averaged among all the pairs.
quantized_ans: int, the quantized value of the above avg DINO-Sim scores based on pre-defined thresholds.
"""
device = self.device
frame_sim_list=[]
for f_idx in range(len(frame_list)-1):
frame_1=frame_list[f_idx]
frame_2=frame_list[f_idx+1]
frame_tensor_1 = self.preprocess(frame_1).unsqueeze(0).to(device)
frame_tensor_2 = self.preprocess(frame_2).unsqueeze(0).to(device)
with torch.no_grad():
feat_1 = self.model(frame_tensor_1).flatten()
feat_2 = self.model(frame_tensor_2).flatten()
cos_sim=F.cosine_similarity(feat_1, feat_2, dim=0).item()
frame_sim_list.append(cos_sim)
dino_frame_score = np.mean(frame_sim_list)
quantized_ans=0
if dino_frame_score >= DINO_POINT_HIGH:
quantized_ans=4
elif dino_frame_score < DINO_POINT_HIGH and dino_frame_score >= DINO_POINT_MID:
quantized_ans=3
elif dino_frame_score < DINO_POINT_MID and dino_frame_score >= DINO_POINT_LOW:
quantized_ans=2
else:
quantized_ans=1
return dino_frame_score, quantized_ans