Spaces:
Runtime error
Runtime error
import numpy as np | |
from PIL import Image | |
import torch.nn.functional as F | |
from typing import List | |
from transformers import CLIPProcessor, CLIPModel | |
ROUND_DIGIT=3 | |
NUM_ASPECT=5 | |
CLIP_POINT_HIGH=0.97 | |
CLIP_POINT_MID=0.9 | |
CLIP_POINT_LOW=0.8 | |
class MetricCLIP_sim(): | |
def __init__(self, device = "cuda") -> None: | |
""" | |
Initialize a class MetricCLIP_sim with the specified device for testing temporal consistency of a given video. | |
Args: | |
device (str, optional): The device on which the model will run. Defaults to "cuda". | |
""" | |
self.device = device | |
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
self.model.to(self.device) | |
self.tokenizer = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
def evaluate(self,frame_list:List[Image.Image]): | |
""" | |
Calculate the cosine similarity between the CLIP features of adjacent frames of a given video to test temporal consistency, | |
then quantize the orginal output based on some predefined thresholds. | |
Args: | |
frame_list:List[Image.Image], frames of the video used in calculation. | |
Returns: | |
clip_frame_score: float, the computed CLIP feature cosine similarity between each adjacent pair of frames and then averaged among all the pairs. | |
quantized_ans: int, the quantized value of the above avg CLIP-Sim scores based on pre-defined thresholds. | |
""" | |
device=self.model.device | |
frame_sim_list=[] | |
for f_idx in range(len(frame_list)-1): | |
frame_1 = frame_list[f_idx] | |
frame_2 = frame_list[f_idx+1] | |
input_1 = self.tokenizer(images=frame_1, return_tensors="pt", padding=True).to(device) | |
input_2 = self.tokenizer(images=frame_2, return_tensors="pt", padding=True).to(device) | |
output_1 = self.model.get_image_features(**input_1).flatten() | |
output_2 = self.model.get_image_features(**input_2).flatten() | |
cos_sim = F.cosine_similarity(output_1, output_2, dim=0).item() | |
frame_sim_list.append(cos_sim) | |
clip_frame_score = np.mean(frame_sim_list) | |
quantized_ans=0 | |
if clip_frame_score >= CLIP_POINT_HIGH: | |
quantized_ans=4 | |
elif clip_frame_score < CLIP_POINT_HIGH and clip_frame_score >= CLIP_POINT_MID: | |
quantized_ans=3 | |
elif clip_frame_score < CLIP_POINT_MID and clip_frame_score >= CLIP_POINT_LOW: | |
quantized_ans=2 | |
else: | |
quantized_ans=1 | |
return clip_frame_score, quantized_ans | |