Baraaqasem's picture
Upload 49 files
413d4d0 verified
import os
import torch
from PIL import Image
from huggingface_hub import snapshot_download, hf_hub_download
from videogen_hub import MODEL_PATH
class SEINE():
def __init__(self):
"""
1. Download the pretrained model and put it inside MODEL_PATH/SEINE
2. Create Pipeline.
"""
from videogen_hub.pipelines.seine.SEINEPipeline import SEINEPipeline
seine_path = hf_hub_download(repo_id="Vchitect/SEINE", filename="seine.pt", local_dir=os.path.join(MODEL_PATH, "SEINE"))
pretrained_model_path = snapshot_download(repo_id="CompVis/stable-diffusion-v1-4",
local_dir=os.path.join(MODEL_PATH, "SEINE", "stable-diffusion-v1-4"),
ignore_patterns=["*pytorch_model.bin", "*fp16*", "*non_ema*"])
self.pipeline = SEINEPipeline(seine_path, pretrained_model_path,
'src/videogen_hub/pipelines/seine/sample_i2v.yaml')
def infer_one_video(self,
input_image: Image.Image,
prompt: str = None,
size: list = [320, 512],
seconds: int = 2,
fps: int = 8,
seed: int = 42):
"""
Generates a single video based on a textual prompt and first frame image, using either a provided image or an image path as the starting point. The output is a tensor representing the video.
Args:
input_image (PIL.Image.Image): The input image to use as the basis for video generation.
prompt (str, optional): The text prompt that guides the video generation. If not specified, the video generation will rely solely on the input image. Defaults to None.
size (list, optional): Specifies the resolution of the output video as [height, width]. Defaults to [320, 512].
seconds (int, optional): The duration of the video in seconds. Defaults to 2.
fps (int, optional): The number of frames per second in the generated video. This determines how smooth the video appears. Defaults to 8.
seed (int, optional): A seed value for random number generation, ensuring reproducibility of the video generation process. Defaults to 42.
Returns:
torch.Tensor: A tensor representing the generated video, structured as (time, channel, height, width).
"""
video = self.pipeline.infer_one_video(input_image=input_image,
text_prompt=prompt,
output_size=size,
num_frames=seconds * fps,
seed=seed)
return video