Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from huggingface_hub import snapshot_download | |
from videogen_hub import MODEL_PATH | |
class ModelScope: | |
def __init__(self, device="gpu"): | |
""" | |
1. Download the pretrained model and put it inside checkpoints/modelscope | |
2. Create Pipeline | |
Note: it seems that the model needed from model_dir cannot support cpu | |
Args: | |
device: 'gpu' or 'cpu' the device to use the model | |
""" | |
from modelscope.pipelines import pipeline | |
from modelscope.models import Model | |
model_dir = snapshot_download( | |
repo_id="ali-vilab/modelscope-damo-text-to-video-synthesis", | |
local_dir=os.path.join(MODEL_PATH, "modelscope"), | |
) | |
model = Model.from_pretrained(model_dir) | |
self.pipeline = pipeline("text-to-video-synthesis", model=model, device=device) | |
def infer_one_video( | |
self, prompt: str = None, seconds: int = 2, fps: int = 8, seed: int = 42 | |
): | |
""" | |
Generates a single video based on the provided prompt and parameters. | |
The generated video always has resolution 256x256 | |
Args: | |
prompt (str, optional): The text prompt to generate the video from. Defaults to None. | |
seconds (int, optional): The duration of the video in seconds. Defaults to 2. | |
fps (int, optional): The frames per second of the video. Defaults to 8. | |
seed (int, optional): The seed for random number generation. Defaults to 42. | |
Returns: | |
torch.Tensor: The generated video as a tensor. | |
""" | |
from modelscope.outputs import OutputKeys | |
from decord import VideoReader | |
from decord import cpu, gpu | |
import io | |
torch.manual_seed(seed) | |
self.pipeline.model.config.model.model_args.max_frames = fps * seconds | |
test_text = { | |
"text": prompt, | |
} | |
output_video_path = self.pipeline( | |
test_text, | |
)[OutputKeys.OUTPUT_VIDEO] | |
result = io.BytesIO(output_video_path) | |
result = VideoReader(result, ctx=cpu(0)) | |
result = torch.from_numpy(result.get_batch(range(len(result))).asnumpy()) | |
return result | |