Spaces:
Runtime error
Runtime error
File size: 6,595 Bytes
5d32408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# General
import os
from os.path import join as opj
import argparse
import datetime
from pathlib import Path
import torch
import gradio as gr
import tempfile
import yaml
# from t2v_enhanced.model.video_ldm import VideoLDM
from typing import List, Optional
# from model.callbacks import SaveConfigCallback
from PIL.Image import Image, fromarray
# from einops import rearrange, repeat
import sys
from ... import MODEL_PATH
sys.path.append("thirdparty")
# from modelscope.pipelines import pipeline
# from modelscope.outputs import OutputKeys
import imageio
import pathlib
import numpy as np
# Utilities
from .inference_utils import *
from .model_init import (
init_modelscope,
init_animatediff,
init_svd,
init_sdxl,
init_v2v_model,
init_streamingt2v_model,
)
from .model_func import *
def pipeline(prompt, size, seconds, fps, seed):
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
default=prompt,
help="The prompt to guide video generation.",
)
parser.add_argument(
"--image", type=str, default="", help="Path to image conditioning."
)
# parser.add_argument('--video', type=str, default="", help="Path to video conditioning.")
parser.add_argument(
"--base_model",
type=str,
default="ModelscopeT2V",
help="Base model to generate first chunk from",
choices=["ModelscopeT2V", "AnimateDiff", "SVD"],
)
parser.add_argument(
"--num_frames",
type=int,
default=seconds * fps,
help="The number of video frames to generate.",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="",
help="The prompt to guide what to not include in video generation.",
)
parser.add_argument(
"--negative_prompt_enhancer",
type=str,
default=None,
help="The prompt to guide what to not include in video enhancement. "
"By default is the same as --negative_prompt",
)
parser.add_argument(
"--num_steps", type=int, default=50, help="The number of denoising steps."
)
parser.add_argument(
"--image_guidance", type=float, default=9.0, help="The guidance scale."
)
parser.add_argument(
"--output_dir",
type=str,
default="results",
help="Path where to save the generated videos.",
)
parser.add_argument("--device", type=str, default="cpu")
parser.add_argument("--seed", type=int, default=seed, help="Random seed")
parser.add_argument(
"--chunk", type=int, default=24, help="chunk_size for randomized blending"
)
parser.add_argument(
"--overlap", type=int, default=8, help="overlap_size for randomized blending"
)
parser.add_argument(
"--offload_models",
action="store_true",
help="Load/Offload models to gpu/cpu before and after inference",
)
args = parser.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
result_fol = Path(args.output_dir).absolute()
device = args.device
# --------------------------
# ----- Configurations -----
# --------------------------
ckpt_file_streaming_t2v = os.path.join(MODEL_PATH, "streamingtv2", "streaming_t2v.ckpt")
cfg_v2v = {
"downscale": 1,
"upscale_size": size,
"model_id": "damo/Video-to-Video",
"pad": True,
}
# --------------------------
# ----- Initialization -----
# --------------------------
if args.base_model == "ModelscopeT2V":
if args.offload_models:
model = init_modelscope("cpu")
else:
model = init_modelscope(device)
elif args.base_model == "AnimateDiff":
if args.offload_models:
model = init_animatediff("cpu")
else:
model = init_animatediff(device)
elif args.base_model == "SVD":
if args.offload_models:
model = init_svd("cpu")
sdxl_model = init_sdxl("cpu")
else:
model = init_svd(device)
sdxl_model = init_sdxl(device)
if args.offload_models:
msxl_model = init_v2v_model(cfg_v2v, "cpu")
else:
msxl_model = init_v2v_model(cfg_v2v, device)
stream_cli, stream_model = init_streamingt2v_model(
ckpt_file_streaming_t2v, result_fol, "cuda"
)
if args.offload_models:
stream_model = st2v_to_device(stream_model, "cpu")
inference_generator = torch.Generator(device="cuda")
# ------------------
# ----- Inputs -----
# ------------------
now = datetime.datetime.now()
name = (
args.prompt[:100].replace(" ", "_")
+ "_"
+ str(now.time()).replace(":", "_").replace(".", "_")
)
inference_generator = torch.Generator(device="cuda")
inference_generator.manual_seed(args.seed)
if args.offload_models:
model = model.to(device)
if args.base_model == "ModelscopeT2V":
short_video = ms_short_gen(args.prompt, model, inference_generator)
elif args.base_model == "AnimateDiff":
short_video = ad_short_gen(args.prompt, model, inference_generator)
elif args.base_model == "SVD":
if args.offload_models:
sdxl_model = sdxl_model.to(device)
short_video = svd_short_gen(
args.image, args.prompt, model, sdxl_model, inference_generator
)
if args.offload_models:
sdxl_model = sdxl_model.to("cpu")
if args.offload_models:
model = model.to("cpu")
n_autoreg_gen = (args.num_frames - 8) // 8
stream_long_gen(
args.prompt,
short_video,
n_autoreg_gen,
args.negative_prompt,
args.seed,
args.num_steps,
args.image_guidance,
name,
stream_cli,
stream_model,
)
if args.offload_models:
stream_model = st2v_to_device(stream_model, "cpu")
args.negative_prompt_enhancer = (
args.negative_prompt_enhancer
if args.negative_prompt_enhancer is not None
else args.negative_prompt
)
if args.offload_models:
msxl_model = v2v_to_device(msxl_model, device)
return video2video_randomized(
args.prompt,
opj(result_fol, name + ".mp4"),
result_fol,
cfg_v2v,
msxl_model,
chunk_size=args.chunk,
overlap_size=args.overlap,
negative_prompt=args.negative_prompt_enhancer,
)
# if args.offload_models:
# msxl_model = v2v_to_device(msxl_model, "cpu")
|