File size: 6,965 Bytes
5d32408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Sample new images from a pre-trained DiT.
"""
import os
import sys

try:
    import utils
    from diffusion import create_diffusion
except:
    # sys.path.append(os.getcwd())
    sys.path.append(os.path.split(sys.path[0])[0])
    # sys.path[0]                 
    # os.path.split(sys.path[0])    
    import utils

    from diffusion import create_diffusion

import torch

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

from einops import rearrange
from PIL import Image
import numpy as np
from torchvision import transforms

sys.path.append("..")
from datasets_seine import video_transforms
from natsort import natsorted


def get_input(args):
    input_path = args.input_path
    transform_video = transforms.Compose([
        video_transforms.ToTensorVideo(),  # TCHW
        video_transforms.ResizeVideo((args.image_h, args.image_w)),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
    ])
    if input_path is not None:
        print(f'loading video from {input_path}')
        if os.path.isdir(input_path):
            file_list = os.listdir(input_path)
            video_frames = []
            if args.mask_type.startswith('onelast'):
                num = int(args.mask_type.split('onelast')[-1])
                # get first and last frame
                first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
                last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
                first_frame = torch.as_tensor(
                    np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                last_frame = torch.as_tensor(
                    np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                for i in range(num):
                    video_frames.append(first_frame)
                # add zeros to frames
                num_zeros = args.num_frames - 2 * num
                for i in range(num_zeros):
                    zeros = torch.zeros_like(first_frame)
                    video_frames.append(zeros)
                for i in range(num):
                    video_frames.append(last_frame)
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)  # f,c,h,w
                video_frames = transform_video(video_frames)
            else:
                for file in file_list:
                    if file.endswith('jpg') or file.endswith('png'):
                        image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
                        video_frames.append(image)
                    else:
                        continue
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)  # f,c,h,w
                video_frames = transform_video(video_frames)
            return video_frames, n
        elif os.path.isfile(input_path):
            _, full_file_name = os.path.split(input_path)
            file_name, extension = os.path.splitext(full_file_name)
            if extension == '.jpg' or extension == '.png':
                print("loading the input image")
                video_frames = []
                num = int(args.mask_type.split('first')[-1])
                first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                for i in range(num):
                    video_frames.append(first_frame)
                num_zeros = args.num_frames - num
                for i in range(num_zeros):
                    zeros = torch.zeros_like(first_frame)
                    video_frames.append(zeros)
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)  # f,c,h,w
                video_frames = transform_video(video_frames)
                return video_frames, n
            else:
                raise TypeError(f'{extension} is not supported !!')
        else:
            raise ValueError('Please check your path input!!')
    else:
        raise ValueError('Need to give a video or some images')


def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device, ):
    b, f, c, h, w = video_input.shape
    latent_h = args.image_size[0] // 8
    latent_w = args.image_size[1] // 8

    # prepare inputs
    if args.use_fp16:
        z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16,
                        device=device)  # b,c,f,h,w
        masked_video = masked_video.to(dtype=torch.float16)
        mask = mask.to(dtype=torch.float16)
    else:
        z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device)  # b,c,f,h,w

    masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
    masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
    masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
    mask = torch.nn.functional.interpolate(mask[:, :, 0, :], size=(latent_h, latent_w)).unsqueeze(1)

    # classifier_free_guidance
    if args.do_classifier_free_guidance:
        masked_video = torch.cat([masked_video] * 2)
        mask = torch.cat([mask] * 2)
        z = torch.cat([z] * 2)
        prompt_all = [prompt] + [args.negative_prompt]

    else:
        masked_video = masked_video
        mask = mask
        z = z
        prompt_all = [prompt]

    text_prompt = text_encoder(text_prompts=prompt_all, train=False)
    model_kwargs = dict(encoder_hidden_states=text_prompt,
                        class_labels=None,
                        cfg_scale=args.cfg_scale,
                        use_fp16=args.use_fp16, )  # tav unet

    # Sample video:
    if args.sample_method == 'ddim':
        samples = diffusion.ddim_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True,
            device=device, \
            mask=mask, x_start=masked_video, use_concat=args.use_mask
        )
    elif args.sample_method == 'ddpm':
        samples = diffusion.p_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True,
            device=device, \
            mask=mask, x_start=masked_video, use_concat=args.use_mask
        )
    samples, _ = samples.chunk(2, dim=0)  # [1, 4, 16, 32, 32]
    if args.use_fp16:
        samples = samples.to(dtype=torch.float16)

    video_clip = samples[0].permute(1, 0, 2, 3).contiguous()  # [16, 4, 32, 32]
    video_clip = vae.decode(video_clip / 0.18215).sample  # [16, 3, 256, 256]
    return video_clip