File size: 49,038 Bytes
b874bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>[Bria-LoRa-FineTune]</title><style>
/* cspell:disable-file */
/* webkit printing magic: print all background colors */
html {
	-webkit-print-color-adjust: exact;
}
* {
	box-sizing: border-box;
	-webkit-print-color-adjust: exact;
}

html,
body {
	margin: 0;
	padding: 0;
}
@media only screen {
	body {
		margin: 2em auto;
		max-width: 900px;
		color: rgb(55, 53, 47);
	}
}

body {
	line-height: 1.5;
	white-space: pre-wrap;
}

a,
a.visited {
	color: inherit;
	text-decoration: underline;
}

.pdf-relative-link-path {
	font-size: 80%;
	color: #444;
}

h1,
h2,
h3 {
	letter-spacing: -0.01em;
	line-height: 1.2;
	font-weight: 600;
	margin-bottom: 0;
}

.page-title {
	font-size: 2.5rem;
	font-weight: 700;
	margin-top: 0;
	margin-bottom: 0.75em;
}

h1 {
	font-size: 1.875rem;
	margin-top: 1.875rem;
}

h2 {
	font-size: 1.5rem;
	margin-top: 1.5rem;
}

h3 {
	font-size: 1.25rem;
	margin-top: 1.25rem;
}

.source {
	border: 1px solid #ddd;
	border-radius: 3px;
	padding: 1.5em;
	word-break: break-all;
}

.callout {
	border-radius: 3px;
	padding: 1rem;
}

figure {
	margin: 1.25em 0;
	page-break-inside: avoid;
}

figcaption {
	opacity: 0.5;
	font-size: 85%;
	margin-top: 0.5em;
}

mark {
	background-color: transparent;
}

.indented {
	padding-left: 1.5em;
}

hr {
	background: transparent;
	display: block;
	width: 100%;
	height: 1px;
	visibility: visible;
	border: none;
	border-bottom: 1px solid rgba(55, 53, 47, 0.09);
}

img {
	max-width: 100%;
}

@media only print {
	img {
		max-height: 100vh;
		object-fit: contain;
	}
}

@page {
	margin: 1in;
}

.collection-content {
	font-size: 0.875rem;
}

.column-list {
	display: flex;
	justify-content: space-between;
}

.column {
	padding: 0 1em;
}

.column:first-child {
	padding-left: 0;
}

.column:last-child {
	padding-right: 0;
}

.table_of_contents-item {
	display: block;
	font-size: 0.875rem;
	line-height: 1.3;
	padding: 0.125rem;
}

.table_of_contents-indent-1 {
	margin-left: 1.5rem;
}

.table_of_contents-indent-2 {
	margin-left: 3rem;
}

.table_of_contents-indent-3 {
	margin-left: 4.5rem;
}

.table_of_contents-link {
	text-decoration: none;
	opacity: 0.7;
	border-bottom: 1px solid rgba(55, 53, 47, 0.18);
}

table,
th,
td {
	border: 1px solid rgba(55, 53, 47, 0.09);
	border-collapse: collapse;
}

table {
	border-left: none;
	border-right: none;
}

th,
td {
	font-weight: normal;
	padding: 0.25em 0.5em;
	line-height: 1.5;
	min-height: 1.5em;
	text-align: left;
}

th {
	color: rgba(55, 53, 47, 0.6);
}

ol,
ul {
	margin: 0;
	margin-block-start: 0.6em;
	margin-block-end: 0.6em;
}

li > ol:first-child,
li > ul:first-child {
	margin-block-start: 0.6em;
}

ul > li {
	list-style: disc;
}

ul.to-do-list {
	padding-inline-start: 0;
}

ul.to-do-list > li {
	list-style: none;
}

.to-do-children-checked {
	text-decoration: line-through;
	opacity: 0.375;
}

ul.toggle > li {
	list-style: none;
}

ul {
	padding-inline-start: 1.7em;
}

ul > li {
	padding-left: 0.1em;
}

ol {
	padding-inline-start: 1.6em;
}

ol > li {
	padding-left: 0.2em;
}

.mono ol {
	padding-inline-start: 2em;
}

.mono ol > li {
	text-indent: -0.4em;
}

.toggle {
	padding-inline-start: 0em;
	list-style-type: none;
}

/* Indent toggle children */
.toggle > li > details {
	padding-left: 1.7em;
}

.toggle > li > details > summary {
	margin-left: -1.1em;
}

.selected-value {
	display: inline-block;
	padding: 0 0.5em;
	background: rgba(206, 205, 202, 0.5);
	border-radius: 3px;
	margin-right: 0.5em;
	margin-top: 0.3em;
	margin-bottom: 0.3em;
	white-space: nowrap;
}

.collection-title {
	display: inline-block;
	margin-right: 1em;
}

.page-description {
    margin-bottom: 2em;
}

.simple-table {
	margin-top: 1em;
	font-size: 0.875rem;
	empty-cells: show;
}
.simple-table td {
	height: 29px;
	min-width: 120px;
}

.simple-table th {
	height: 29px;
	min-width: 120px;
}

.simple-table-header-color {
	background: rgb(247, 246, 243);
	color: black;
}
.simple-table-header {
	font-weight: 500;
}

time {
	opacity: 0.5;
}

.icon {
	display: inline-block;
	max-width: 1.2em;
	max-height: 1.2em;
	text-decoration: none;
	vertical-align: text-bottom;
	margin-right: 0.5em;
}

img.icon {
	border-radius: 3px;
}

.user-icon {
	width: 1.5em;
	height: 1.5em;
	border-radius: 100%;
	margin-right: 0.5rem;
}

.user-icon-inner {
	font-size: 0.8em;
}

.text-icon {
	border: 1px solid #000;
	text-align: center;
}

.page-cover-image {
	display: block;
	object-fit: cover;
	width: 100%;
	max-height: 30vh;
}

.page-header-icon {
	font-size: 3rem;
	margin-bottom: 1rem;
}

.page-header-icon-with-cover {
	margin-top: -0.72em;
	margin-left: 0.07em;
}

.page-header-icon img {
	border-radius: 3px;
}

.link-to-page {
	margin: 1em 0;
	padding: 0;
	border: none;
	font-weight: 500;
}

p > .user {
	opacity: 0.5;
}

td > .user,
td > time {
	white-space: nowrap;
}

input[type="checkbox"] {
	transform: scale(1.5);
	margin-right: 0.6em;
	vertical-align: middle;
}

p {
	margin-top: 0.5em;
	margin-bottom: 0.5em;
}

.image {
	border: none;
	margin: 1.5em 0;
	padding: 0;
	border-radius: 0;
	text-align: center;
}

.code,
code {
	background: rgba(135, 131, 120, 0.15);
	border-radius: 3px;
	padding: 0.2em 0.4em;
	border-radius: 3px;
	font-size: 85%;
	tab-size: 2;
}

code {
	color: #eb5757;
}

.code {
	padding: 1.5em 1em;
}

.code-wrap {
	white-space: pre-wrap;
	word-break: break-all;
}

.code > code {
	background: none;
	padding: 0;
	font-size: 100%;
	color: inherit;
}

blockquote {
	font-size: 1.25em;
	margin: 1em 0;
	padding-left: 1em;
	border-left: 3px solid rgb(55, 53, 47);
}

.bookmark {
	text-decoration: none;
	max-height: 8em;
	padding: 0;
	display: flex;
	width: 100%;
	align-items: stretch;
}

.bookmark-title {
	font-size: 0.85em;
	overflow: hidden;
	text-overflow: ellipsis;
	height: 1.75em;
	white-space: nowrap;
}

.bookmark-text {
	display: flex;
	flex-direction: column;
}

.bookmark-info {
	flex: 4 1 180px;
	padding: 12px 14px 14px;
	display: flex;
	flex-direction: column;
	justify-content: space-between;
}

.bookmark-image {
	width: 33%;
	flex: 1 1 180px;
	display: block;
	position: relative;
	object-fit: cover;
	border-radius: 1px;
}

.bookmark-description {
	color: rgba(55, 53, 47, 0.6);
	font-size: 0.75em;
	overflow: hidden;
	max-height: 4.5em;
	word-break: break-word;
}

.bookmark-href {
	font-size: 0.75em;
	margin-top: 0.25em;
}

.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
.highlight-default {
	color: rgba(55, 53, 47, 1);
}
.highlight-gray {
	color: rgba(120, 119, 116, 1);
	fill: rgba(120, 119, 116, 1);
}
.highlight-brown {
	color: rgba(159, 107, 83, 1);
	fill: rgba(159, 107, 83, 1);
}
.highlight-orange {
	color: rgba(217, 115, 13, 1);
	fill: rgba(217, 115, 13, 1);
}
.highlight-yellow {
	color: rgba(203, 145, 47, 1);
	fill: rgba(203, 145, 47, 1);
}
.highlight-teal {
	color: rgba(68, 131, 97, 1);
	fill: rgba(68, 131, 97, 1);
}
.highlight-blue {
	color: rgba(51, 126, 169, 1);
	fill: rgba(51, 126, 169, 1);
}
.highlight-purple {
	color: rgba(144, 101, 176, 1);
	fill: rgba(144, 101, 176, 1);
}
.highlight-pink {
	color: rgba(193, 76, 138, 1);
	fill: rgba(193, 76, 138, 1);
}
.highlight-red {
	color: rgba(212, 76, 71, 1);
	fill: rgba(212, 76, 71, 1);
}
.highlight-default_background {
	color: rgba(55, 53, 47, 1);
}
.highlight-gray_background {
	background: rgba(241, 241, 239, 1);
}
.highlight-brown_background {
	background: rgba(244, 238, 238, 1);
}
.highlight-orange_background {
	background: rgba(251, 236, 221, 1);
}
.highlight-yellow_background {
	background: rgba(251, 243, 219, 1);
}
.highlight-teal_background {
	background: rgba(237, 243, 236, 1);
}
.highlight-blue_background {
	background: rgba(231, 243, 248, 1);
}
.highlight-purple_background {
	background: rgba(244, 240, 247, 0.8);
}
.highlight-pink_background {
	background: rgba(249, 238, 243, 0.8);
}
.highlight-red_background {
	background: rgba(253, 235, 236, 1);
}
.block-color-default {
	color: inherit;
	fill: inherit;
}
.block-color-gray {
	color: rgba(120, 119, 116, 1);
	fill: rgba(120, 119, 116, 1);
}
.block-color-brown {
	color: rgba(159, 107, 83, 1);
	fill: rgba(159, 107, 83, 1);
}
.block-color-orange {
	color: rgba(217, 115, 13, 1);
	fill: rgba(217, 115, 13, 1);
}
.block-color-yellow {
	color: rgba(203, 145, 47, 1);
	fill: rgba(203, 145, 47, 1);
}
.block-color-teal {
	color: rgba(68, 131, 97, 1);
	fill: rgba(68, 131, 97, 1);
}
.block-color-blue {
	color: rgba(51, 126, 169, 1);
	fill: rgba(51, 126, 169, 1);
}
.block-color-purple {
	color: rgba(144, 101, 176, 1);
	fill: rgba(144, 101, 176, 1);
}
.block-color-pink {
	color: rgba(193, 76, 138, 1);
	fill: rgba(193, 76, 138, 1);
}
.block-color-red {
	color: rgba(212, 76, 71, 1);
	fill: rgba(212, 76, 71, 1);
}
.block-color-default_background {
	color: inherit;
	fill: inherit;
}
.block-color-gray_background {
	background: rgba(241, 241, 239, 1);
}
.block-color-brown_background {
	background: rgba(244, 238, 238, 1);
}
.block-color-orange_background {
	background: rgba(251, 236, 221, 1);
}
.block-color-yellow_background {
	background: rgba(251, 243, 219, 1);
}
.block-color-teal_background {
	background: rgba(237, 243, 236, 1);
}
.block-color-blue_background {
	background: rgba(231, 243, 248, 1);
}
.block-color-purple_background {
	background: rgba(244, 240, 247, 0.8);
}
.block-color-pink_background {
	background: rgba(249, 238, 243, 0.8);
}
.block-color-red_background {
	background: rgba(253, 235, 236, 1);
}
.select-value-color-uiBlue { background-color: rgba(35, 131, 226, .07); }
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
.select-value-color-transparentGray { background-color: rgba(227, 226, 224, 0); }
.select-value-color-translucentGray { background-color: rgba(0, 0, 0, 0.06); }
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
.select-value-color-pageGlass { background-color: undefined; }
.select-value-color-washGlass { background-color: undefined; }

.checkbox {
	display: inline-flex;
	vertical-align: text-bottom;
	width: 16;
	height: 16;
	background-size: 16px;
	margin-left: 2px;
	margin-right: 5px;
}

.checkbox-on {
	background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
}

.checkbox-off {
	background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
}
	
</style></head><body><article id="6c6ceb0e-c7a0-40e4-b270-a0ecb60585f0" class="page sans"><header><div class="page-header-icon undefined"><span class="icon">🧪</span></div><h1 class="page-title">[Bria-LoRa-FineTune]</h1><p class="page-description"></p></header><div class="page-body"><p id="14aba153-4679-801b-9d09-c9bc7f724332" class="">
</p><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="14aba153-4679-80e7-9d50-d1d96167521b"><div style="font-size:1.5em"><span class="icon">🔥</span></div><div style="width:100%"><blockquote id="787c60fb-a865-470b-b336-fb00c6c4fe47" class="">Join our <strong><a href="https://discord.gg/Nxe9YW9zHS">Discord community</a></strong> for more information, tutorials, tools, and to connect with other users!</blockquote></div></figure><p id="14aba153-4679-8062-9caf-ccedb2789586" class="">
</p><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="149ba153-4679-805d-8668-d0084da9ccdb"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%"><p id="5ec2f388-191f-43fb-a4e9-7936b6b74ca4" class="">To use the links below right click on them and open in new tab</p></div></figure><p id="14aba153-4679-8039-a623-d55ebd35fd57" class="">
</p><hr id="14aba153-4679-801c-9f07-d08869a6af98"/><p id="14aba153-4679-80d7-ac11-d55cbb15d1b4" class="">
</p><p id="c5134d7e-62d0-49f9-8400-9149c1e15b74" class="">The following guide demonstrates Bria best practices for fine tuning on top of our foundation models using <a href="https://arxiv.org/abs/2106.09685">Lora</a> architecture and Bria foundation models. </p><p id="149ba153-4679-80f8-8b21-e66259903116" class="">
</p><p id="149ba153-4679-8009-8d4d-cec1e29b4f36" class=""><em>Full implementation of the guide below:</em></p><figure id="149ba153-4679-8039-a947-e04725423506"><a href="https://huggingface.co/spaces/Bar-Fin/lora-sdxl-finetuning/blob/main/lora_finetune.ipynb" class="bookmark source"><div class="bookmark-info"><div class="bookmark-text"><div class="bookmark-title">huggingface.co</div></div><div class="bookmark-href">https://huggingface.co/spaces/Bar-Fin/lora-sdxl-finetuning/blob/main/lora_finetune.ipynb</div></div></a></figure><h1 id="149ba153-4679-80e7-b3c8-d7d65fa2f1e1" class="">Theory</h1><p id="149ba153-4679-8047-b451-efe2b605aa4b" class="">
</p><h3 id="149ba153-4679-8004-8254-e6af55f7f0fa" class="">Dream boot</h3><figure id="149ba153-4679-806b-853c-e20596d0e2fd" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image.png"><img style="width:707.9900512695312px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image.png"/></a></figure><p id="149ba153-4679-8074-96c0-e7d508bc1885" class="">is a fine-tuning technique designed to personalize generative models like Stable Diffusion. It allows users to train the model on a small set of images (e.g., photos of a person, object, or style) and integrate the learned concept into the model’s vocabulary.</p><p id="149ba153-4679-8005-9417-c20e761e3d87" class="">
</p><h3 id="149ba153-4679-8018-849a-e5645ced8db1" class="">Lora Architecture vs Regular fine tuning</h3><figure id="149ba153-4679-80fb-8607-f54414a98de5" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%201.png"><img style="width:2320px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%201.png"/></a></figure><p id="149ba153-4679-8032-bfbd-e9ab803061f3" class="">LoRA is a technique to efficiently fine-tune large machine learning models by reducing the number of trainable parameters. Instead of updating the full set of model weights during training, LoRA represents weight updates as the product of two smaller matrices (low-rank matrices).</p><p id="149ba153-4679-80f7-a9ff-ebab637d821a" class="">This approach significantly reduces computational and memory requirements while maintaining high performance, making it particularly useful for large-scale models like transformers. LoRA is widely adopted in applications like NLP and computer vision where fine-tuning massive pre-trained models would otherwise be resource-intensive.</p><p id="149ba153-4679-80a1-94c3-f3bb3bffa861" class="">
</p><h3 id="149ba153-4679-8019-9875-d983162064d0" class=""><strong>Stochastic Gradient descent</strong></h3><div id="149ba153-4679-805a-8f15-cc76eeac21d0" class="column-list"><div id="149ba153-4679-80fc-acd8-f7ce273123d0" style="width:50%" class="column"><figure id="149ba153-4679-80e2-b1a2-cbbbaff5563f" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/7df06035-f512-4471-8269-6495a9338be2.png"><img style="width:414.0659340659341px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/7df06035-f512-4471-8269-6495a9338be2.png"/></a></figure></div><div id="149ba153-4679-8067-b0fc-ecddc353d7c5" style="width:49.99999999999999%" class="column"><figure id="149ba153-4679-80a1-a685-fe281ceffc7d" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%202.png"><img style="width:691.9885864257812px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%202.png"/></a></figure></div></div><p id="149ba153-4679-803d-8f98-c8a7b9eea46e" class=""><strong>Analogy</strong> - Stochastic Gradient Descent (SGD) is like finding the lowest point in a bumpy valley by taking small steps downhill, but instead of looking at the whole valley at once, you only look at one random part of it each time to decide your step.</p><p id="149ba153-4679-80ce-a58a-e80de0278e51" class="">
</p><h3 id="149ba153-4679-800c-9dc7-e608416dad84" class="">The diffusion process </h3><figure id="149ba153-4679-80b1-9b43-f9b479be9763" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/Screenshot_2024-11-25_at_10.33.01.png"><img style="width:707.9900512695312px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/Screenshot_2024-11-25_at_10.33.01.png"/></a></figure><p id="5c7f2d4f-7163-4212-831b-8143bd0011a9" class="">
</p><h1 id="16179015-cdb5-4880-acc4-fc450dfabb44" class="">Training script</h1><p id="957774ff-d50f-4f6b-9216-70a5149f7d93" class="">On Bria production we use the standard diffusers code:</p><figure id="2c386060-0fef-479c-9d04-13d4ac948e29"><a href="https://huggingface.co/docs/diffusers/en/training/lora" class="bookmark source"><div class="bookmark-info"><div class="bookmark-text"><div class="bookmark-title">LoRA</div><div class="bookmark-description">We’re on a journey to advance and democratize artificial intelligence through open source and open science.</div></div><div class="bookmark-href"><img src="https://huggingface.co/favicon.ico" class="icon bookmark-icon"/>https://huggingface.co/docs/diffusers/en/training/lora</div></div><img src="https://huggingface.co/front/thumbnails/docs/diffusers.png" class="bookmark-image"/></a></figure><p id="3d9b5316-11c9-4c4f-a2eb-1eaf8dbd5ce4" class="">But recommend evaluating the more advance methods as well</p><ul id="c4e2ab5f-0655-4599-bc45-d98fdd8caf7a" class="bulleted-list"><li style="list-style-type:disc"><a href="https://huggingface.co/blog/sdxl_lora_advanced_script">Pivotal</a></li></ul><ul id="3c42ab6c-e9e8-41d2-bc12-3224edc75b5b" class="bulleted-list"><li style="list-style-type:disc"><a href="https://github.com/NVlabs/DoRA">Dora</a></li></ul><p id="b8a6ef85-efcf-4bf0-98cb-58809effb3b3" class="">
</p><h1 id="1f445c3c-3978-4db4-887e-5dd6f1cffcbb" class="">Recipe </h1><p id="de99a4cf-0b9d-4468-9a57-d19384c4cc94" class="">This is the recommended recipe for our auto trading feature:</p><script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="814612a2-b242-476b-bc96-6c24ee19e1d5" class="code"><code class="language-Bash">
accelerate launch \
    --config_file accelerate_config.yaml \
    train_new.py \
    --caption_column=&quot;...&quot; \
    --pretrained_model_name_or_path=&quot;briaai/BRIA-2.3&quot; \
	  --dataset_name=$DATASET_NAME \
    --resolution=1024 \
    --center_crop \
    --train_batch_size=1 \
    --gradient_accumulation_steps=4 \
    --gradient_checkpointing \
    --max_train_steps=1000 \
    --checkpointing_steps=200 \
    --use_8bit_adam \
    --learning_rate=1e-04 \
    --lr_scheduler=&quot;constant&quot; \
    --lr_warmup_steps=0 \
    --mixed_precision=&quot;bf16&quot; \
    --validation_epochs=5 \
    --output_dir=$MODEL_DIR \
    --rank=16</code></pre><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="c2c58972-e772-4fb4-9dc0-5ccea1d0598a"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%">Using rank 256 consume lots of memory and increase model size, we recommend experimenting with lower ones e.g. 64, 32, 16</div></figure><p id="004fbcbb-eb44-42f7-9556-d2cb6aad42aa" class="">
</p><h1 id="4708ec58-df72-4feb-9719-0dd3ebe5b275" class="">Model</h1><p id="891f9ec4-2e26-4bea-a005-8afed37280da" class="">Use Bria 2.3 as the “go to” model, but if needed our HD can fix quality issues for specific use-cases </p><figure id="2f489514-2d69-441f-8565-617b5092c2dd"><a href="https://huggingface.co/briaai/BRIA-2.3" class="bookmark source"><div class="bookmark-info"><div class="bookmark-text"><div class="bookmark-title">briaai/BRIA-2.3 · Hugging Face</div><div class="bookmark-description">We’re on a journey to advance and democratize artificial intelligence through open source and open science.</div></div><div class="bookmark-href"><img src="https://huggingface.co/favicon.ico" class="icon bookmark-icon"/>https://huggingface.co/briaai/BRIA-2.3</div></div><img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/briaai/BRIA-2.3.png" class="bookmark-image"/></a></figure><p id="e0ce7995-0929-44b8-a2b5-2dc7c95f706a" class="">
</p><h1 id="79baa328-eaec-4027-bd0a-979274090e47" class="">Best practices for Tailored Generation training datasets</h1><ul id="9ab63f9e-c234-4bc3-916f-5c41d51cdb7b" class="bulleted-list"><li style="list-style-type:disc">For general style we usually use 20-100 images </li></ul><ul id="5c4b16a5-28bd-45c6-9be4-80d579a0a323" class="bulleted-list"><li style="list-style-type:disc">For single person / character 10-20</li></ul><h3 id="149ba153-4679-801f-b69a-fbe417a57072" class="">Dataset description</h3><p id="149ba153-4679-80bd-b9ff-e862178b73db" class="">Enhance training performance by providing a concise and clear description of your style or subject.</p><ul id="149ba153-4679-807d-a006-eb92b084def1" class="bulleted-list"><li style="list-style-type:disc">Aim to produce results that align with the style of the base model you&#x27;re training on</li></ul><ul id="149ba153-4679-8073-aec2-d67ef168260c" class="bulleted-list"><li style="list-style-type:disc">Be brief and accurate and avoid excessive explanations about the style. Instead, use a few, well-chosen words that succinctly capture its essence, either through widely recognized concepts or by directly naming it.</li></ul><p id="149ba153-4679-809b-bc7b-e1b55918ef32" class="">Examples of dataset descriptions:</p><div id="149ba153-4679-80c6-aa35-d317666c70b3" class="column-list"><div id="149ba153-4679-81a9-91e6-e529b71427df" style="width:25%" class="column"><figure id="149ba153-4679-8145-aabd-db0bd803d43b" class="image"><a href="https://platform.bria.ai/assets/Flat%20vector%20illustration-ec3b592a.png"><img style="width:427.99713134765625px" src="https://platform.bria.ai/assets/Flat%20vector%20illustration-ec3b592a.png"/></a><figcaption>Flat vector illustration</figcaption></figure></div><div id="149ba153-4679-8109-a292-e57d5a4e1acc" style="width:25%" class="column"><figure id="149ba153-4679-8110-b880-d08ddc68c50d" class="image"><a href="https://platform.bria.ai/assets/3D%20render-a2445206.png"><img style="width:213.99856567382812px" src="https://platform.bria.ai/assets/3D%20render-a2445206.png"/></a><figcaption>3D render</figcaption></figure></div><div id="149ba153-4679-8113-b05c-cdf3e77dc292" style="width:25%" class="column"><figure id="149ba153-4679-816f-a8ca-d52997748698" class="image"><a href="https://platform.bria.ai/assets/Water%20Color-1b559c2c.png"><img style="width:213.99856567382812px" src="https://platform.bria.ai/assets/Water%20Color-1b559c2c.png"/></a><figcaption>Water Color</figcaption></figure></div><div id="149ba153-4679-810b-8644-dd8aa4e05998" style="width:25%" class="column"><figure id="149ba153-4679-818d-8cc0-c658b9604a22" class="image"><a href="https://platform.bria.ai/assets/Pixel%20game%20art-df7ebe1b.png"><img style="width:213.99856567382812px" src="https://platform.bria.ai/assets/Pixel%20game%20art-df7ebe1b.png"/></a><figcaption>Pixel game art</figcaption></figure></div></div><p id="149ba153-4679-80e0-869f-c372bf187d36" class=""><strong>Style</strong></p><p id="149ba153-4679-8015-86ca-f7b0aa5279a3" class="">When training a model for a specific style type, it is crucial to provide images that contain the right information to guide the model. You should use around 20-60 images, and the dataset should consist of a clear style within a specific domain.</p><p id="149ba153-4679-8071-b813-d7312ed7edc8" class="">The images in your dataset should consider multiple perspectives and the appropriate background styles you aim to create.</p><p id="149ba153-4679-80aa-8ba2-dcdc313828d9" class="">
</p><p id="149ba153-4679-808f-9082-e4e2ebb2d82d" class=""><strong>Examples of common use cases:</strong></p><p id="149ba153-4679-8000-8916-f91b289787e8" class="">
</p><p id="149ba153-4679-80bb-b8cf-f90ca7da9c34" class=""><strong>Share the same style:</strong></p><p id="149ba153-4679-802c-a37f-e97b26c49e53" class="">Datasets can include a wide range of variations as long as they share the same artistic style.</p><div id="149ba153-4679-8049-871b-df737405c5b5" class="column-list"><div id="149ba153-4679-81ca-812c-c52980664bf1" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81f8-b1bb-e7a1ce379eae" class="image"><a href="https://platform.bria.ai/assets/Share%20the%20same%20style_3-cd431a1b.png"><img style="width:160px" src="https://platform.bria.ai/assets/Share%20the%20same%20style_3-cd431a1b.png"/></a></figure></div><div id="149ba153-4679-81e6-a310-e980e76e6b45" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81e5-bfa8-ebb1c020f5f1" class="image"><a href="https://platform.bria.ai/assets/Share%20the%20same%20style_2-f270d0a7.png"><img style="width:160px" src="https://platform.bria.ai/assets/Share%20the%20same%20style_2-f270d0a7.png"/></a></figure></div><div id="149ba153-4679-8151-ab16-cd7b47ebb412" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-8180-b786-e2d9f803ab51" class="image"><a href="https://platform.bria.ai/assets/Share%20the%20same%20style_1-09893066.png"><img style="width:160px" src="https://platform.bria.ai/assets/Share%20the%20same%20style_1-09893066.png"/></a></figure></div></div><hr id="149ba153-4679-805e-ada4-d3bfd7b7c3f0"/><p id="149ba153-4679-807f-9415-e015b07c4c3c" class="">
</p><p id="149ba153-4679-805e-b96f-dafb54b33b35" class=""><strong>Mixing image styles may lead to poor results.</strong></p><p id="149ba153-4679-80df-bbac-d5642022bf7d" class="">Ensure your dataset contains images with uniform style, including color schemes and design techniques, to achieve the desired outcomes from the model.</p><div id="149ba153-4679-8046-8a86-ed8b80087fce" class="column-list"><div id="149ba153-4679-81a7-8fe1-f53a1729d8c9" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81de-9d38-ece53929ba6c" class="image"><a href="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.-8b64818f.png"><img style="width:160px" src="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.-8b64818f.png"/></a></figure></div><div id="149ba153-4679-8167-9476-edfb8f3c4040" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81e2-9b00-f4de31cbd092" class="image"><a href="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.2-af516ada.png"><img style="width:160px" src="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.2-af516ada.png"/></a></figure></div><div id="149ba153-4679-814b-b3d8-dd16ecadc6bb" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-81fa-a662-c8a32400eaef" class="image"><a href="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.3-842f30b9.png"><img style="width:160px" src="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.3-842f30b9.png"/></a></figure></div></div><p id="149ba153-4679-809e-850e-fb1768552c40" class="">
</p><hr id="149ba153-4679-802b-9d07-c63599e2a9d2"/><p id="149ba153-4679-80bc-ad14-f873397b0e54" class="">
</p><h3 id="149ba153-4679-805f-96c9-daa7fc0cd39a" class="">Single subject</h3><p id="149ba153-4679-802e-a285-d89a716707de" class="">When training a model for a single-subject type, it is essential to provide images that include the right information to guide the model. The dataset should contain 10-20 images and should consist of a single subject type, such as a person, car, bottle, animated character, etc.</p><p id="149ba153-4679-8051-b03a-dee61f23c6b1" class="">The images in your dataset should consider multiple perspectives and the appropriate background styles you aim to create.</p><p id="149ba153-4679-802f-977c-ea38c8b08354" class="">
</p><p id="149ba153-4679-8014-9da7-c8310f2afa69" class=""><strong>Here are some examples that demonstrate common use cases:</strong></p><p id="149ba153-4679-801c-a2dc-cc74df09c437" class="">
</p><p id="149ba153-4679-804d-bfd6-ec6db501e374" class=""><strong>Multi-Perspective</strong></p><div id="149ba153-4679-80c4-98f1-f59ff8eb0807" class="column-list"><div id="149ba153-4679-803e-98f9-db8d44f9fe86" style="width:43.75%" class="column"><p id="149ba153-4679-80de-aa32-faec971739fa" class="">If you aim for your model to generate images of a single subject from various angles or perspectives, ensure your dataset includes examples showcasing these perspectives.</p></div><div id="149ba153-4679-808e-81d9-dc964b6a6402" style="width:18.75%" class="column"><figure id="149ba153-4679-8131-b5a7-ecc74ef6d2d4" class="image"><a href="https://platform.bria.ai/assets/Multi-Perspective-e2223101.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Multi-Perspective-e2223101.png"/></a></figure><p id="149ba153-4679-801d-8f92-c3f26f4d179b" class="">
</p></div><div id="149ba153-4679-80c9-a3f3-e06fdf2e9472" style="width:18.750000000000004%" class="column"><figure id="149ba153-4679-8117-a11a-ef67682d55ea" class="image"><a href="https://platform.bria.ai/assets/Multi-Perspective2-836652f7.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Multi-Perspective2-836652f7.png"/></a></figure></div><div id="149ba153-4679-80d7-a90b-edcf5635333e" style="width:18.750000000000004%" class="column"><figure id="149ba153-4679-81d1-b684-cdf6692a5b35" class="image"><a href="https://platform.bria.ai/assets/Multi-Perspective3-7cfbe728.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Multi-Perspective3-7cfbe728.png"/></a></figure></div></div><hr id="149ba153-4679-80d9-aa82-c848e041749b"/><p id="149ba153-4679-8016-8c00-dad1ffc41f5f" class=""><strong>Incorporating Backgrounds:</strong></p><div id="149ba153-4679-80fc-8abb-d72aa5c9bb68" class="column-list"><div id="149ba153-4679-80f5-a5cd-eb9eebe4ae25" style="width:43.75%" class="column"><p id="149ba153-4679-8067-bcd8-f679e34001f7" class="">Should you desire your model not only to capture the subject but also to learn and replicate the surrounding scenery accurately, it&#x27;s crucial to include images with backgrounds in your dataset. This approach allows the model to understand how the subject interacts with its environment, enabling it to generate more contextually rich images.</p></div><div id="149ba153-4679-80c4-8a21-d91c60d5e00f" style="width:18.75%" class="column"><figure id="149ba153-4679-813c-a169-f60f13bcadb1" class="image"><a href="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-2-3e29cfb6.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-2-3e29cfb6.png"/></a></figure><p id="149ba153-4679-80f5-8583-ece7e337a633" class="">
</p></div><div id="149ba153-4679-80ce-9882-cd8f1af9906d" style="width:18.749999999999996%" class="column"><figure id="149ba153-4679-81d8-9286-fea0c9c2c11f" class="image"><a href="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-1-9d7beb25.png"><img style="width:155.03550720214844px" src="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-1-9d7beb25.png"/></a></figure></div><div id="149ba153-4679-80e0-94b1-f7765e0ed6e7" style="width:18.75%" class="column"><figure id="149ba153-4679-816c-b9fd-cb63f483204d" class="image"><a href="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-8f4373c4.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-8f4373c4.png"/></a></figure></div></div><hr id="149ba153-4679-803a-9cd1-de2fb0bcb143"/><p id="149ba153-4679-804f-8339-f52118d68f6d" class=""><strong>Transparent or solid background:</strong></p><div id="149ba153-4679-80be-be8e-ee10740b41a6" class="column-list"><div id="149ba153-4679-80f2-b6d2-fd352477e59a" style="width:43.75%" class="column"><p id="149ba153-4679-8022-bee1-dc25ce5f5362" class="">In cases where the subject is presented against a background of transparent or solid colors (such as white, black, blue, etc.), it is essential to ensure that the subject covers most of the image size. If necessary, it is better to crop the solid margins of the image to reduce the amount of transparency or solid color present.</p></div><div id="149ba153-4679-80cc-bee7-f51ef3554305" style="width:18.749999999999993%" class="column"><figure id="149ba153-4679-812f-9612-dbbaeef240a7" class="image"><a href="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_3-eff802b3.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_3-eff802b3.png"/></a></figure></div><div id="149ba153-4679-80bd-9538-d9cd927956bc" style="width:18.75%" class="column"><figure id="149ba153-4679-815b-85b7-fcd0717e1c2c" class="image"><a href="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_2-c6c103e8.png"><img style="width:160.9943084716797px" src="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_2-c6c103e8.png"/></a></figure></div><div id="149ba153-4679-8058-8f25-f86048c7eae3" style="width:18.749999999999996%" class="column"><figure id="149ba153-4679-811e-a25d-c2e423d07a0b" class="image"><a href="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_-04b520b5.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_-04b520b5.png"/></a></figure></div></div><hr id="149ba153-4679-8099-8f67-d210d474e908"/><p id="149ba153-4679-80ae-a0ac-d44a38c8b1de" class=""><strong>Consistent image style:</strong></p><p id="149ba153-4679-80da-a3b4-cdbb142ab538" class="">Ensure you don&#x27;t mix styles within your dataset; for example, a dataset should not contain both animated cars and photo-realistic cars together..</p><div id="149ba153-4679-80f4-84fe-ddf0874ca9d0" class="column-list"><div id="149ba153-4679-81fa-a5db-f4fd5ff350e8" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81a2-8639-c2e2462d3d5e" class="image"><a href="https://platform.bria.ai/assets/Consistent%20image%20style_-cef545b2.png"><img style="width:160px" src="https://platform.bria.ai/assets/Consistent%20image%20style_-cef545b2.png"/></a></figure></div><div id="149ba153-4679-8172-9306-c8e724768450" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-810e-baeb-f5db484b8908" class="image"><a href="https://platform.bria.ai/assets/Consistent%20image%20style_2-fd7a1239.png"><img style="width:160px" src="https://platform.bria.ai/assets/Consistent%20image%20style_2-fd7a1239.png"/></a></figure></div><div id="149ba153-4679-813d-805e-eb32e4ac4797" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-8186-811f-fa8b4627c783" class="image"><a href="https://platform.bria.ai/assets/Consistent%20image%20style_3-a41423bd.png"><img style="width:160px" src="https://platform.bria.ai/assets/Consistent%20image%20style_3-a41423bd.png"/></a></figure></div></div><hr id="149ba153-4679-803e-9acb-ff295884c395"/><p id="149ba153-4679-8010-aa6d-c085e2f13e87" class=""><strong>Group of subjects:</strong></p><p id="149ba153-4679-8019-a3c2-c2b1eaae0575" class="">If your goal is to generate images featuring your subject in a group, it is advisable to include multiple examples of such groupings in the dataset.</p><div id="149ba153-4679-8098-a774-f84a3efd0903" class="column-list"><div id="149ba153-4679-818d-9d21-c5c0242eb5cc" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-819f-b03f-c84fce221e2b" class="image"><a href="https://platform.bria.ai/assets/Group%20Of%20subjects-8033aca4.png"><img style="width:160px" src="https://platform.bria.ai/assets/Group%20Of%20subjects-8033aca4.png"/></a></figure><p id="149ba153-4679-8070-adb7-cdd6cbf2ccfe" class="">
</p></div><div id="149ba153-4679-813c-9547-c863500a1c07" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81b3-b77b-cf5eb6328663" class="image"><a href="https://platform.bria.ai/assets/Group%20Of%20subjects2-53e50c35.png"><img style="width:160px" src="https://platform.bria.ai/assets/Group%20Of%20subjects2-53e50c35.png"/></a></figure></div><div id="149ba153-4679-8194-a4c9-f4e55bbb66da" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-8192-b115-d22329ffc52c" class="image"><a href="https://platform.bria.ai/assets/Group%20Of%20subjects3-b1657952.png"><img style="width:160px" src="https://platform.bria.ai/assets/Group%20Of%20subjects3-b1657952.png"/></a></figure></div></div><p id="149ba153-4679-805e-b768-c76cce4719d6" class="">
</p><h3 id="149ba153-4679-8096-9ec3-cd37027f0d2c" class="">Icons</h3><p id="149ba153-4679-80bd-82a6-c61f709222a7" class="">When training a model for a specific icon style, it is crucial to provide images that contain the right information to guide the model. Users should upload 20-50 images, and the dataset should consist of a clear icons’ style within a specific domain.</p><p id="149ba153-4679-8033-a6e4-e54bc654b4eb" class="">The images in your dataset should consider multiple types of icons sharing the same style.</p><p id="149ba153-4679-8078-9445-d7434906fe88" class="">
</p><p id="149ba153-4679-8018-84ac-e32b04533b84" class=""><strong>Examples of common use cases:</strong></p><p id="149ba153-4679-805e-9b37-fea58f3c800e" class="">
</p><p id="149ba153-4679-80aa-9f57-d11afbed2357" class=""><strong>Share the same style:</strong></p><div id="149ba153-4679-8089-8363-c604d8c24c73" class="column-list"><div id="149ba153-4679-80ef-bb91-d359b40b9043" style="width:53.125%" class="column"><p id="149ba153-4679-8064-89c6-eee35a5fef5e" class="">Datasets can include a wide range of variations as long as they share the same icons style.</p></div><div id="149ba153-4679-80e7-8538-c11d4cf3d680" style="width:15.624999999999996%" class="column"><figure id="149ba153-4679-81b6-b970-cfb7bf6e8d8f" class="image"><a href="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_1-032bd2c7.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_1-032bd2c7.png"/></a></figure></div><div id="149ba153-4679-80c0-9658-fb03e4fe802f" style="width:15.625%" class="column"><figure id="149ba153-4679-8166-8408-e5bd118da43e" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%203.png"><img style="width:205.31959533691406px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%203.png"/></a></figure></div><div id="149ba153-4679-8092-8b2c-c9c04d8f5bff" style="width:15.624999999999996%" class="column"><figure id="149ba153-4679-8113-9848-c83279828237" class="image"><a href="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_2-a8cb6543.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_2-a8cb6543.png"/></a></figure></div></div><figure id="149ba153-4679-80d5-90c8-d21c2eb5d8a1" class="image">
</figure><hr id="149ba153-4679-808b-b8ad-c7a51791229c"/><p id="149ba153-4679-8082-b66e-d511c2ae8256" class="">
</p><p id="149ba153-4679-8038-8a78-f8c9d3f3efe2" class=""><strong>Define the style of the icons in details:</strong></p><div id="149ba153-4679-80ed-a82c-f3c95ef8df7f" class="column-list"><div id="149ba153-4679-807a-9870-ccf4cff0e58a" style="width:53.125%" class="column"><p id="149ba153-4679-805a-be40-e720d12344d0" class="">Ensure the description of the icon’s style is as detailed as possible.For example: vector illustration , line art, very thick continuous outlines, minimalistic illustration, vector drawn strokes, continuous strokes</p></div><div id="149ba153-4679-8027-a471-fa22df5d08a4" style="width:15.625%" class="column"><figure id="149ba153-4679-819f-98a9-f668a482ea17" class="image"><a href="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details-58dcef9a.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details-58dcef9a.png"/></a></figure><p id="149ba153-4679-803e-8bac-c09e88edbdb5" class="">
</p></div><div id="149ba153-4679-8090-9d2e-e6e7b59a3b36" style="width:15.624999999999995%" class="column"><figure id="149ba153-4679-8165-a0da-e1a2a5770039" class="image"><a href="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details4-5fcd011b.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details4-5fcd011b.png"/></a></figure></div><div id="149ba153-4679-80c9-8cb8-c1225dd474e9" style="width:15.625000000000004%" class="column"><figure id="149ba153-4679-81e0-8dc3-e896d4d77fbf" class="image"><a href="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details3-1f2a5bc2.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details3-1f2a5bc2.png"/></a></figure></div></div><hr id="149ba153-4679-809d-9a66-f14f1d92a8fa"/><p id="149ba153-4679-80d0-9269-e8a0178d6970" class="">
</p><p id="149ba153-4679-8076-b970-c0c561e75f39" class=""><strong>For SVG images, use simple 2D images for training:</strong></p><div id="149ba153-4679-8035-8bf0-df8d675feded" class="column-list"><div id="149ba153-4679-80a1-a255-cfdabcf1fe65" style="width:53.125%" class="column"><p id="149ba153-4679-8083-a81a-cb00ad54b1e1" class="">To create high-quality images in SVG format, use simple 2D images in your dataset. Images should not include many details, shading, or complex styling.</p></div><div id="149ba153-4679-80ac-b76d-e6c3d6133af4" style="width:15.625%" class="column"><figure id="149ba153-4679-816b-a26a-c26db2e3b11f" class="image"><a href="https://platform.bria.ai/assets/For%20SVG%20images_%20use%20simple%202D%20images%20for%20training-a7a99486.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/For%20SVG%20images_%20use%20simple%202D%20images%20for%20training-a7a99486.png"/></a></figure><p id="149ba153-4679-803d-b89b-f52808dd543a" class="">
</p></div><div id="149ba153-4679-80ee-995c-e2940db8d14a" style="width:15.625%" class="column"><figure id="149ba153-4679-8177-9dc6-d858e6a87a81" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%204.png"><img style="width:205.31959533691406px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%204.png"/></a></figure></div><div id="149ba153-4679-8090-beab-e75220d742db" style="width:15.625%" class="column"><figure id="149ba153-4679-818d-abd4-ecd9f9da071b" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%205.png"><img style="width:205.31959533691406px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%205.png"/></a></figure></div></div><figure id="149ba153-4679-8007-9260-ed31688bfba2" class="image">
	</figure><p id="8d7189d8-60e1-4105-84f3-6440f80acbd7" class="">
</p><h2 id="d7295af2-0fce-493f-8c0b-1e6271239248" class="">Captions / Prompts </h2><p id="3a38850f-51a5-46c9-80b0-0b6c108dfdb7" class="">WIP</p><p id="78fc3213-f449-4294-866a-07e37a656e3d" class="">
</p><h2 id="2313cc32-1a8b-4087-b2d3-db00048d0a22" class="">Compute</h2><p id="38d0bb7e-7484-4460-a2d4-dce103222a2d" class="">We run on Nvidia A10 GPU:</p><ul id="58a34fa4-d225-4089-8c90-681de2da4f1c" class="bulleted-list"><li style="list-style-type:disc">On AWS - <code>g5.xlarge</code> / <code>g5.12xlarge</code></li></ul><p id="e7e278d6-2196-4058-993a-4d0eee780804" class="">
</p><hr id="7bf2cb6d-0751-4bd3-a215-fd56676eb1d4"/><p id="153f6676-0e13-425d-a85f-66f31ab92e62" class="">
</p><p id="934a5f03-5959-4596-a305-ed1c1109eace" class="">For any additional questions please contact <code>bar@bria.ai</code> </p><p id="2283fb02-4e72-489f-9751-ec8f249f9ae2" class="">
</p></div></article><span class="sans" style="font-size:14px;padding-top:2em"></span></body></html>