Spaces:
Running
Running
File size: 49,038 Bytes
b874bdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>[Bria-LoRa-FineTune]</title><style>
/* cspell:disable-file */
/* webkit printing magic: print all background colors */
html {
-webkit-print-color-adjust: exact;
}
* {
box-sizing: border-box;
-webkit-print-color-adjust: exact;
}
html,
body {
margin: 0;
padding: 0;
}
@media only screen {
body {
margin: 2em auto;
max-width: 900px;
color: rgb(55, 53, 47);
}
}
body {
line-height: 1.5;
white-space: pre-wrap;
}
a,
a.visited {
color: inherit;
text-decoration: underline;
}
.pdf-relative-link-path {
font-size: 80%;
color: #444;
}
h1,
h2,
h3 {
letter-spacing: -0.01em;
line-height: 1.2;
font-weight: 600;
margin-bottom: 0;
}
.page-title {
font-size: 2.5rem;
font-weight: 700;
margin-top: 0;
margin-bottom: 0.75em;
}
h1 {
font-size: 1.875rem;
margin-top: 1.875rem;
}
h2 {
font-size: 1.5rem;
margin-top: 1.5rem;
}
h3 {
font-size: 1.25rem;
margin-top: 1.25rem;
}
.source {
border: 1px solid #ddd;
border-radius: 3px;
padding: 1.5em;
word-break: break-all;
}
.callout {
border-radius: 3px;
padding: 1rem;
}
figure {
margin: 1.25em 0;
page-break-inside: avoid;
}
figcaption {
opacity: 0.5;
font-size: 85%;
margin-top: 0.5em;
}
mark {
background-color: transparent;
}
.indented {
padding-left: 1.5em;
}
hr {
background: transparent;
display: block;
width: 100%;
height: 1px;
visibility: visible;
border: none;
border-bottom: 1px solid rgba(55, 53, 47, 0.09);
}
img {
max-width: 100%;
}
@media only print {
img {
max-height: 100vh;
object-fit: contain;
}
}
@page {
margin: 1in;
}
.collection-content {
font-size: 0.875rem;
}
.column-list {
display: flex;
justify-content: space-between;
}
.column {
padding: 0 1em;
}
.column:first-child {
padding-left: 0;
}
.column:last-child {
padding-right: 0;
}
.table_of_contents-item {
display: block;
font-size: 0.875rem;
line-height: 1.3;
padding: 0.125rem;
}
.table_of_contents-indent-1 {
margin-left: 1.5rem;
}
.table_of_contents-indent-2 {
margin-left: 3rem;
}
.table_of_contents-indent-3 {
margin-left: 4.5rem;
}
.table_of_contents-link {
text-decoration: none;
opacity: 0.7;
border-bottom: 1px solid rgba(55, 53, 47, 0.18);
}
table,
th,
td {
border: 1px solid rgba(55, 53, 47, 0.09);
border-collapse: collapse;
}
table {
border-left: none;
border-right: none;
}
th,
td {
font-weight: normal;
padding: 0.25em 0.5em;
line-height: 1.5;
min-height: 1.5em;
text-align: left;
}
th {
color: rgba(55, 53, 47, 0.6);
}
ol,
ul {
margin: 0;
margin-block-start: 0.6em;
margin-block-end: 0.6em;
}
li > ol:first-child,
li > ul:first-child {
margin-block-start: 0.6em;
}
ul > li {
list-style: disc;
}
ul.to-do-list {
padding-inline-start: 0;
}
ul.to-do-list > li {
list-style: none;
}
.to-do-children-checked {
text-decoration: line-through;
opacity: 0.375;
}
ul.toggle > li {
list-style: none;
}
ul {
padding-inline-start: 1.7em;
}
ul > li {
padding-left: 0.1em;
}
ol {
padding-inline-start: 1.6em;
}
ol > li {
padding-left: 0.2em;
}
.mono ol {
padding-inline-start: 2em;
}
.mono ol > li {
text-indent: -0.4em;
}
.toggle {
padding-inline-start: 0em;
list-style-type: none;
}
/* Indent toggle children */
.toggle > li > details {
padding-left: 1.7em;
}
.toggle > li > details > summary {
margin-left: -1.1em;
}
.selected-value {
display: inline-block;
padding: 0 0.5em;
background: rgba(206, 205, 202, 0.5);
border-radius: 3px;
margin-right: 0.5em;
margin-top: 0.3em;
margin-bottom: 0.3em;
white-space: nowrap;
}
.collection-title {
display: inline-block;
margin-right: 1em;
}
.page-description {
margin-bottom: 2em;
}
.simple-table {
margin-top: 1em;
font-size: 0.875rem;
empty-cells: show;
}
.simple-table td {
height: 29px;
min-width: 120px;
}
.simple-table th {
height: 29px;
min-width: 120px;
}
.simple-table-header-color {
background: rgb(247, 246, 243);
color: black;
}
.simple-table-header {
font-weight: 500;
}
time {
opacity: 0.5;
}
.icon {
display: inline-block;
max-width: 1.2em;
max-height: 1.2em;
text-decoration: none;
vertical-align: text-bottom;
margin-right: 0.5em;
}
img.icon {
border-radius: 3px;
}
.user-icon {
width: 1.5em;
height: 1.5em;
border-radius: 100%;
margin-right: 0.5rem;
}
.user-icon-inner {
font-size: 0.8em;
}
.text-icon {
border: 1px solid #000;
text-align: center;
}
.page-cover-image {
display: block;
object-fit: cover;
width: 100%;
max-height: 30vh;
}
.page-header-icon {
font-size: 3rem;
margin-bottom: 1rem;
}
.page-header-icon-with-cover {
margin-top: -0.72em;
margin-left: 0.07em;
}
.page-header-icon img {
border-radius: 3px;
}
.link-to-page {
margin: 1em 0;
padding: 0;
border: none;
font-weight: 500;
}
p > .user {
opacity: 0.5;
}
td > .user,
td > time {
white-space: nowrap;
}
input[type="checkbox"] {
transform: scale(1.5);
margin-right: 0.6em;
vertical-align: middle;
}
p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.image {
border: none;
margin: 1.5em 0;
padding: 0;
border-radius: 0;
text-align: center;
}
.code,
code {
background: rgba(135, 131, 120, 0.15);
border-radius: 3px;
padding: 0.2em 0.4em;
border-radius: 3px;
font-size: 85%;
tab-size: 2;
}
code {
color: #eb5757;
}
.code {
padding: 1.5em 1em;
}
.code-wrap {
white-space: pre-wrap;
word-break: break-all;
}
.code > code {
background: none;
padding: 0;
font-size: 100%;
color: inherit;
}
blockquote {
font-size: 1.25em;
margin: 1em 0;
padding-left: 1em;
border-left: 3px solid rgb(55, 53, 47);
}
.bookmark {
text-decoration: none;
max-height: 8em;
padding: 0;
display: flex;
width: 100%;
align-items: stretch;
}
.bookmark-title {
font-size: 0.85em;
overflow: hidden;
text-overflow: ellipsis;
height: 1.75em;
white-space: nowrap;
}
.bookmark-text {
display: flex;
flex-direction: column;
}
.bookmark-info {
flex: 4 1 180px;
padding: 12px 14px 14px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.bookmark-image {
width: 33%;
flex: 1 1 180px;
display: block;
position: relative;
object-fit: cover;
border-radius: 1px;
}
.bookmark-description {
color: rgba(55, 53, 47, 0.6);
font-size: 0.75em;
overflow: hidden;
max-height: 4.5em;
word-break: break-word;
}
.bookmark-href {
font-size: 0.75em;
margin-top: 0.25em;
}
.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI Variable Display", "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
.highlight-default {
color: rgba(55, 53, 47, 1);
}
.highlight-gray {
color: rgba(120, 119, 116, 1);
fill: rgba(120, 119, 116, 1);
}
.highlight-brown {
color: rgba(159, 107, 83, 1);
fill: rgba(159, 107, 83, 1);
}
.highlight-orange {
color: rgba(217, 115, 13, 1);
fill: rgba(217, 115, 13, 1);
}
.highlight-yellow {
color: rgba(203, 145, 47, 1);
fill: rgba(203, 145, 47, 1);
}
.highlight-teal {
color: rgba(68, 131, 97, 1);
fill: rgba(68, 131, 97, 1);
}
.highlight-blue {
color: rgba(51, 126, 169, 1);
fill: rgba(51, 126, 169, 1);
}
.highlight-purple {
color: rgba(144, 101, 176, 1);
fill: rgba(144, 101, 176, 1);
}
.highlight-pink {
color: rgba(193, 76, 138, 1);
fill: rgba(193, 76, 138, 1);
}
.highlight-red {
color: rgba(212, 76, 71, 1);
fill: rgba(212, 76, 71, 1);
}
.highlight-default_background {
color: rgba(55, 53, 47, 1);
}
.highlight-gray_background {
background: rgba(241, 241, 239, 1);
}
.highlight-brown_background {
background: rgba(244, 238, 238, 1);
}
.highlight-orange_background {
background: rgba(251, 236, 221, 1);
}
.highlight-yellow_background {
background: rgba(251, 243, 219, 1);
}
.highlight-teal_background {
background: rgba(237, 243, 236, 1);
}
.highlight-blue_background {
background: rgba(231, 243, 248, 1);
}
.highlight-purple_background {
background: rgba(244, 240, 247, 0.8);
}
.highlight-pink_background {
background: rgba(249, 238, 243, 0.8);
}
.highlight-red_background {
background: rgba(253, 235, 236, 1);
}
.block-color-default {
color: inherit;
fill: inherit;
}
.block-color-gray {
color: rgba(120, 119, 116, 1);
fill: rgba(120, 119, 116, 1);
}
.block-color-brown {
color: rgba(159, 107, 83, 1);
fill: rgba(159, 107, 83, 1);
}
.block-color-orange {
color: rgba(217, 115, 13, 1);
fill: rgba(217, 115, 13, 1);
}
.block-color-yellow {
color: rgba(203, 145, 47, 1);
fill: rgba(203, 145, 47, 1);
}
.block-color-teal {
color: rgba(68, 131, 97, 1);
fill: rgba(68, 131, 97, 1);
}
.block-color-blue {
color: rgba(51, 126, 169, 1);
fill: rgba(51, 126, 169, 1);
}
.block-color-purple {
color: rgba(144, 101, 176, 1);
fill: rgba(144, 101, 176, 1);
}
.block-color-pink {
color: rgba(193, 76, 138, 1);
fill: rgba(193, 76, 138, 1);
}
.block-color-red {
color: rgba(212, 76, 71, 1);
fill: rgba(212, 76, 71, 1);
}
.block-color-default_background {
color: inherit;
fill: inherit;
}
.block-color-gray_background {
background: rgba(241, 241, 239, 1);
}
.block-color-brown_background {
background: rgba(244, 238, 238, 1);
}
.block-color-orange_background {
background: rgba(251, 236, 221, 1);
}
.block-color-yellow_background {
background: rgba(251, 243, 219, 1);
}
.block-color-teal_background {
background: rgba(237, 243, 236, 1);
}
.block-color-blue_background {
background: rgba(231, 243, 248, 1);
}
.block-color-purple_background {
background: rgba(244, 240, 247, 0.8);
}
.block-color-pink_background {
background: rgba(249, 238, 243, 0.8);
}
.block-color-red_background {
background: rgba(253, 235, 236, 1);
}
.select-value-color-uiBlue { background-color: rgba(35, 131, 226, .07); }
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
.select-value-color-transparentGray { background-color: rgba(227, 226, 224, 0); }
.select-value-color-translucentGray { background-color: rgba(0, 0, 0, 0.06); }
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
.select-value-color-pageGlass { background-color: undefined; }
.select-value-color-washGlass { background-color: undefined; }
.checkbox {
display: inline-flex;
vertical-align: text-bottom;
width: 16;
height: 16;
background-size: 16px;
margin-left: 2px;
margin-right: 5px;
}
.checkbox-on {
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
}
.checkbox-off {
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
}
</style></head><body><article id="6c6ceb0e-c7a0-40e4-b270-a0ecb60585f0" class="page sans"><header><div class="page-header-icon undefined"><span class="icon">🧪</span></div><h1 class="page-title">[Bria-LoRa-FineTune]</h1><p class="page-description"></p></header><div class="page-body"><p id="14aba153-4679-801b-9d09-c9bc7f724332" class="">
</p><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="14aba153-4679-80e7-9d50-d1d96167521b"><div style="font-size:1.5em"><span class="icon">🔥</span></div><div style="width:100%"><blockquote id="787c60fb-a865-470b-b336-fb00c6c4fe47" class="">Join our <strong><a href="https://discord.gg/Nxe9YW9zHS">Discord community</a></strong> for more information, tutorials, tools, and to connect with other users!</blockquote></div></figure><p id="14aba153-4679-8062-9caf-ccedb2789586" class="">
</p><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="149ba153-4679-805d-8668-d0084da9ccdb"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%"><p id="5ec2f388-191f-43fb-a4e9-7936b6b74ca4" class="">To use the links below right click on them and open in new tab</p></div></figure><p id="14aba153-4679-8039-a623-d55ebd35fd57" class="">
</p><hr id="14aba153-4679-801c-9f07-d08869a6af98"/><p id="14aba153-4679-80d7-ac11-d55cbb15d1b4" class="">
</p><p id="c5134d7e-62d0-49f9-8400-9149c1e15b74" class="">The following guide demonstrates Bria best practices for fine tuning on top of our foundation models using <a href="https://arxiv.org/abs/2106.09685">Lora</a> architecture and Bria foundation models. </p><p id="149ba153-4679-80f8-8b21-e66259903116" class="">
</p><p id="149ba153-4679-8009-8d4d-cec1e29b4f36" class=""><em>Full implementation of the guide below:</em></p><figure id="149ba153-4679-8039-a947-e04725423506"><a href="https://huggingface.co/spaces/Bar-Fin/lora-sdxl-finetuning/blob/main/lora_finetune.ipynb" class="bookmark source"><div class="bookmark-info"><div class="bookmark-text"><div class="bookmark-title">huggingface.co</div></div><div class="bookmark-href">https://huggingface.co/spaces/Bar-Fin/lora-sdxl-finetuning/blob/main/lora_finetune.ipynb</div></div></a></figure><h1 id="149ba153-4679-80e7-b3c8-d7d65fa2f1e1" class="">Theory</h1><p id="149ba153-4679-8047-b451-efe2b605aa4b" class="">
</p><h3 id="149ba153-4679-8004-8254-e6af55f7f0fa" class="">Dream boot</h3><figure id="149ba153-4679-806b-853c-e20596d0e2fd" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image.png"><img style="width:707.9900512695312px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image.png"/></a></figure><p id="149ba153-4679-8074-96c0-e7d508bc1885" class="">is a fine-tuning technique designed to personalize generative models like Stable Diffusion. It allows users to train the model on a small set of images (e.g., photos of a person, object, or style) and integrate the learned concept into the model’s vocabulary.</p><p id="149ba153-4679-8005-9417-c20e761e3d87" class="">
</p><h3 id="149ba153-4679-8018-849a-e5645ced8db1" class="">Lora Architecture vs Regular fine tuning</h3><figure id="149ba153-4679-80fb-8607-f54414a98de5" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%201.png"><img style="width:2320px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%201.png"/></a></figure><p id="149ba153-4679-8032-bfbd-e9ab803061f3" class="">LoRA is a technique to efficiently fine-tune large machine learning models by reducing the number of trainable parameters. Instead of updating the full set of model weights during training, LoRA represents weight updates as the product of two smaller matrices (low-rank matrices).</p><p id="149ba153-4679-80f7-a9ff-ebab637d821a" class="">This approach significantly reduces computational and memory requirements while maintaining high performance, making it particularly useful for large-scale models like transformers. LoRA is widely adopted in applications like NLP and computer vision where fine-tuning massive pre-trained models would otherwise be resource-intensive.</p><p id="149ba153-4679-80a1-94c3-f3bb3bffa861" class="">
</p><h3 id="149ba153-4679-8019-9875-d983162064d0" class=""><strong>Stochastic Gradient descent</strong></h3><div id="149ba153-4679-805a-8f15-cc76eeac21d0" class="column-list"><div id="149ba153-4679-80fc-acd8-f7ce273123d0" style="width:50%" class="column"><figure id="149ba153-4679-80e2-b1a2-cbbbaff5563f" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/7df06035-f512-4471-8269-6495a9338be2.png"><img style="width:414.0659340659341px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/7df06035-f512-4471-8269-6495a9338be2.png"/></a></figure></div><div id="149ba153-4679-8067-b0fc-ecddc353d7c5" style="width:49.99999999999999%" class="column"><figure id="149ba153-4679-80a1-a685-fe281ceffc7d" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%202.png"><img style="width:691.9885864257812px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%202.png"/></a></figure></div></div><p id="149ba153-4679-803d-8f98-c8a7b9eea46e" class=""><strong>Analogy</strong> - Stochastic Gradient Descent (SGD) is like finding the lowest point in a bumpy valley by taking small steps downhill, but instead of looking at the whole valley at once, you only look at one random part of it each time to decide your step.</p><p id="149ba153-4679-80ce-a58a-e80de0278e51" class="">
</p><h3 id="149ba153-4679-800c-9dc7-e608416dad84" class="">The diffusion process </h3><figure id="149ba153-4679-80b1-9b43-f9b479be9763" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/Screenshot_2024-11-25_at_10.33.01.png"><img style="width:707.9900512695312px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/Screenshot_2024-11-25_at_10.33.01.png"/></a></figure><p id="5c7f2d4f-7163-4212-831b-8143bd0011a9" class="">
</p><h1 id="16179015-cdb5-4880-acc4-fc450dfabb44" class="">Training script</h1><p id="957774ff-d50f-4f6b-9216-70a5149f7d93" class="">On Bria production we use the standard diffusers code:</p><figure id="2c386060-0fef-479c-9d04-13d4ac948e29"><a href="https://huggingface.co/docs/diffusers/en/training/lora" class="bookmark source"><div class="bookmark-info"><div class="bookmark-text"><div class="bookmark-title">LoRA</div><div class="bookmark-description">We’re on a journey to advance and democratize artificial intelligence through open source and open science.</div></div><div class="bookmark-href"><img src="https://huggingface.co/favicon.ico" class="icon bookmark-icon"/>https://huggingface.co/docs/diffusers/en/training/lora</div></div><img src="https://huggingface.co/front/thumbnails/docs/diffusers.png" class="bookmark-image"/></a></figure><p id="3d9b5316-11c9-4c4f-a2eb-1eaf8dbd5ce4" class="">But recommend evaluating the more advance methods as well</p><ul id="c4e2ab5f-0655-4599-bc45-d98fdd8caf7a" class="bulleted-list"><li style="list-style-type:disc"><a href="https://huggingface.co/blog/sdxl_lora_advanced_script">Pivotal</a></li></ul><ul id="3c42ab6c-e9e8-41d2-bc12-3224edc75b5b" class="bulleted-list"><li style="list-style-type:disc"><a href="https://github.com/NVlabs/DoRA">Dora</a></li></ul><p id="b8a6ef85-efcf-4bf0-98cb-58809effb3b3" class="">
</p><h1 id="1f445c3c-3978-4db4-887e-5dd6f1cffcbb" class="">Recipe </h1><p id="de99a4cf-0b9d-4468-9a57-d19384c4cc94" class="">This is the recommended recipe for our auto trading feature:</p><script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="814612a2-b242-476b-bc96-6c24ee19e1d5" class="code"><code class="language-Bash">
accelerate launch \
--config_file accelerate_config.yaml \
train_new.py \
--caption_column="..." \
--pretrained_model_name_or_path="briaai/BRIA-2.3" \
--dataset_name=$DATASET_NAME \
--resolution=1024 \
--center_crop \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=1000 \
--checkpointing_steps=200 \
--use_8bit_adam \
--learning_rate=1e-04 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--mixed_precision="bf16" \
--validation_epochs=5 \
--output_dir=$MODEL_DIR \
--rank=16</code></pre><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="c2c58972-e772-4fb4-9dc0-5ccea1d0598a"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%">Using rank 256 consume lots of memory and increase model size, we recommend experimenting with lower ones e.g. 64, 32, 16</div></figure><p id="004fbcbb-eb44-42f7-9556-d2cb6aad42aa" class="">
</p><h1 id="4708ec58-df72-4feb-9719-0dd3ebe5b275" class="">Model</h1><p id="891f9ec4-2e26-4bea-a005-8afed37280da" class="">Use Bria 2.3 as the “go to” model, but if needed our HD can fix quality issues for specific use-cases </p><figure id="2f489514-2d69-441f-8565-617b5092c2dd"><a href="https://huggingface.co/briaai/BRIA-2.3" class="bookmark source"><div class="bookmark-info"><div class="bookmark-text"><div class="bookmark-title">briaai/BRIA-2.3 · Hugging Face</div><div class="bookmark-description">We’re on a journey to advance and democratize artificial intelligence through open source and open science.</div></div><div class="bookmark-href"><img src="https://huggingface.co/favicon.ico" class="icon bookmark-icon"/>https://huggingface.co/briaai/BRIA-2.3</div></div><img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/briaai/BRIA-2.3.png" class="bookmark-image"/></a></figure><p id="e0ce7995-0929-44b8-a2b5-2dc7c95f706a" class="">
</p><h1 id="79baa328-eaec-4027-bd0a-979274090e47" class="">Best practices for Tailored Generation training datasets</h1><ul id="9ab63f9e-c234-4bc3-916f-5c41d51cdb7b" class="bulleted-list"><li style="list-style-type:disc">For general style we usually use 20-100 images </li></ul><ul id="5c4b16a5-28bd-45c6-9be4-80d579a0a323" class="bulleted-list"><li style="list-style-type:disc">For single person / character 10-20</li></ul><h3 id="149ba153-4679-801f-b69a-fbe417a57072" class="">Dataset description</h3><p id="149ba153-4679-80bd-b9ff-e862178b73db" class="">Enhance training performance by providing a concise and clear description of your style or subject.</p><ul id="149ba153-4679-807d-a006-eb92b084def1" class="bulleted-list"><li style="list-style-type:disc">Aim to produce results that align with the style of the base model you're training on</li></ul><ul id="149ba153-4679-8073-aec2-d67ef168260c" class="bulleted-list"><li style="list-style-type:disc">Be brief and accurate and avoid excessive explanations about the style. Instead, use a few, well-chosen words that succinctly capture its essence, either through widely recognized concepts or by directly naming it.</li></ul><p id="149ba153-4679-809b-bc7b-e1b55918ef32" class="">Examples of dataset descriptions:</p><div id="149ba153-4679-80c6-aa35-d317666c70b3" class="column-list"><div id="149ba153-4679-81a9-91e6-e529b71427df" style="width:25%" class="column"><figure id="149ba153-4679-8145-aabd-db0bd803d43b" class="image"><a href="https://platform.bria.ai/assets/Flat%20vector%20illustration-ec3b592a.png"><img style="width:427.99713134765625px" src="https://platform.bria.ai/assets/Flat%20vector%20illustration-ec3b592a.png"/></a><figcaption>Flat vector illustration</figcaption></figure></div><div id="149ba153-4679-8109-a292-e57d5a4e1acc" style="width:25%" class="column"><figure id="149ba153-4679-8110-b880-d08ddc68c50d" class="image"><a href="https://platform.bria.ai/assets/3D%20render-a2445206.png"><img style="width:213.99856567382812px" src="https://platform.bria.ai/assets/3D%20render-a2445206.png"/></a><figcaption>3D render</figcaption></figure></div><div id="149ba153-4679-8113-b05c-cdf3e77dc292" style="width:25%" class="column"><figure id="149ba153-4679-816f-a8ca-d52997748698" class="image"><a href="https://platform.bria.ai/assets/Water%20Color-1b559c2c.png"><img style="width:213.99856567382812px" src="https://platform.bria.ai/assets/Water%20Color-1b559c2c.png"/></a><figcaption>Water Color</figcaption></figure></div><div id="149ba153-4679-810b-8644-dd8aa4e05998" style="width:25%" class="column"><figure id="149ba153-4679-818d-8cc0-c658b9604a22" class="image"><a href="https://platform.bria.ai/assets/Pixel%20game%20art-df7ebe1b.png"><img style="width:213.99856567382812px" src="https://platform.bria.ai/assets/Pixel%20game%20art-df7ebe1b.png"/></a><figcaption>Pixel game art</figcaption></figure></div></div><p id="149ba153-4679-80e0-869f-c372bf187d36" class=""><strong>Style</strong></p><p id="149ba153-4679-8015-86ca-f7b0aa5279a3" class="">When training a model for a specific style type, it is crucial to provide images that contain the right information to guide the model. You should use around 20-60 images, and the dataset should consist of a clear style within a specific domain.</p><p id="149ba153-4679-8071-b813-d7312ed7edc8" class="">The images in your dataset should consider multiple perspectives and the appropriate background styles you aim to create.</p><p id="149ba153-4679-80aa-8ba2-dcdc313828d9" class="">
</p><p id="149ba153-4679-808f-9082-e4e2ebb2d82d" class=""><strong>Examples of common use cases:</strong></p><p id="149ba153-4679-8000-8916-f91b289787e8" class="">
</p><p id="149ba153-4679-80bb-b8cf-f90ca7da9c34" class=""><strong>Share the same style:</strong></p><p id="149ba153-4679-802c-a37f-e97b26c49e53" class="">Datasets can include a wide range of variations as long as they share the same artistic style.</p><div id="149ba153-4679-8049-871b-df737405c5b5" class="column-list"><div id="149ba153-4679-81ca-812c-c52980664bf1" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81f8-b1bb-e7a1ce379eae" class="image"><a href="https://platform.bria.ai/assets/Share%20the%20same%20style_3-cd431a1b.png"><img style="width:160px" src="https://platform.bria.ai/assets/Share%20the%20same%20style_3-cd431a1b.png"/></a></figure></div><div id="149ba153-4679-81e6-a310-e980e76e6b45" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81e5-bfa8-ebb1c020f5f1" class="image"><a href="https://platform.bria.ai/assets/Share%20the%20same%20style_2-f270d0a7.png"><img style="width:160px" src="https://platform.bria.ai/assets/Share%20the%20same%20style_2-f270d0a7.png"/></a></figure></div><div id="149ba153-4679-8151-ab16-cd7b47ebb412" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-8180-b786-e2d9f803ab51" class="image"><a href="https://platform.bria.ai/assets/Share%20the%20same%20style_1-09893066.png"><img style="width:160px" src="https://platform.bria.ai/assets/Share%20the%20same%20style_1-09893066.png"/></a></figure></div></div><hr id="149ba153-4679-805e-ada4-d3bfd7b7c3f0"/><p id="149ba153-4679-807f-9415-e015b07c4c3c" class="">
</p><p id="149ba153-4679-805e-b96f-dafb54b33b35" class=""><strong>Mixing image styles may lead to poor results.</strong></p><p id="149ba153-4679-80df-bbac-d5642022bf7d" class="">Ensure your dataset contains images with uniform style, including color schemes and design techniques, to achieve the desired outcomes from the model.</p><div id="149ba153-4679-8046-8a86-ed8b80087fce" class="column-list"><div id="149ba153-4679-81a7-8fe1-f53a1729d8c9" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81de-9d38-ece53929ba6c" class="image"><a href="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.-8b64818f.png"><img style="width:160px" src="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.-8b64818f.png"/></a></figure></div><div id="149ba153-4679-8167-9476-edfb8f3c4040" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81e2-9b00-f4de31cbd092" class="image"><a href="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.2-af516ada.png"><img style="width:160px" src="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.2-af516ada.png"/></a></figure></div><div id="149ba153-4679-814b-b3d8-dd16ecadc6bb" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-81fa-a662-c8a32400eaef" class="image"><a href="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.3-842f30b9.png"><img style="width:160px" src="https://platform.bria.ai/assets/Mixing%20image%20styles%20may%20lead%20to%20poor%20results.3-842f30b9.png"/></a></figure></div></div><p id="149ba153-4679-809e-850e-fb1768552c40" class="">
</p><hr id="149ba153-4679-802b-9d07-c63599e2a9d2"/><p id="149ba153-4679-80bc-ad14-f873397b0e54" class="">
</p><h3 id="149ba153-4679-805f-96c9-daa7fc0cd39a" class="">Single subject</h3><p id="149ba153-4679-802e-a285-d89a716707de" class="">When training a model for a single-subject type, it is essential to provide images that include the right information to guide the model. The dataset should contain 10-20 images and should consist of a single subject type, such as a person, car, bottle, animated character, etc.</p><p id="149ba153-4679-8051-b03a-dee61f23c6b1" class="">The images in your dataset should consider multiple perspectives and the appropriate background styles you aim to create.</p><p id="149ba153-4679-802f-977c-ea38c8b08354" class="">
</p><p id="149ba153-4679-8014-9da7-c8310f2afa69" class=""><strong>Here are some examples that demonstrate common use cases:</strong></p><p id="149ba153-4679-801c-a2dc-cc74df09c437" class="">
</p><p id="149ba153-4679-804d-bfd6-ec6db501e374" class=""><strong>Multi-Perspective</strong></p><div id="149ba153-4679-80c4-98f1-f59ff8eb0807" class="column-list"><div id="149ba153-4679-803e-98f9-db8d44f9fe86" style="width:43.75%" class="column"><p id="149ba153-4679-80de-aa32-faec971739fa" class="">If you aim for your model to generate images of a single subject from various angles or perspectives, ensure your dataset includes examples showcasing these perspectives.</p></div><div id="149ba153-4679-808e-81d9-dc964b6a6402" style="width:18.75%" class="column"><figure id="149ba153-4679-8131-b5a7-ecc74ef6d2d4" class="image"><a href="https://platform.bria.ai/assets/Multi-Perspective-e2223101.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Multi-Perspective-e2223101.png"/></a></figure><p id="149ba153-4679-801d-8f92-c3f26f4d179b" class="">
</p></div><div id="149ba153-4679-80c9-a3f3-e06fdf2e9472" style="width:18.750000000000004%" class="column"><figure id="149ba153-4679-8117-a11a-ef67682d55ea" class="image"><a href="https://platform.bria.ai/assets/Multi-Perspective2-836652f7.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Multi-Perspective2-836652f7.png"/></a></figure></div><div id="149ba153-4679-80d7-a90b-edcf5635333e" style="width:18.750000000000004%" class="column"><figure id="149ba153-4679-81d1-b684-cdf6692a5b35" class="image"><a href="https://platform.bria.ai/assets/Multi-Perspective3-7cfbe728.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Multi-Perspective3-7cfbe728.png"/></a></figure></div></div><hr id="149ba153-4679-80d9-aa82-c848e041749b"/><p id="149ba153-4679-8016-8c00-dad1ffc41f5f" class=""><strong>Incorporating Backgrounds:</strong></p><div id="149ba153-4679-80fc-8abb-d72aa5c9bb68" class="column-list"><div id="149ba153-4679-80f5-a5cd-eb9eebe4ae25" style="width:43.75%" class="column"><p id="149ba153-4679-8067-bcd8-f679e34001f7" class="">Should you desire your model not only to capture the subject but also to learn and replicate the surrounding scenery accurately, it's crucial to include images with backgrounds in your dataset. This approach allows the model to understand how the subject interacts with its environment, enabling it to generate more contextually rich images.</p></div><div id="149ba153-4679-80c4-8a21-d91c60d5e00f" style="width:18.75%" class="column"><figure id="149ba153-4679-813c-a169-f60f13bcadb1" class="image"><a href="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-2-3e29cfb6.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-2-3e29cfb6.png"/></a></figure><p id="149ba153-4679-80f5-8583-ece7e337a633" class="">
</p></div><div id="149ba153-4679-80ce-9882-cd8f1af9906d" style="width:18.749999999999996%" class="column"><figure id="149ba153-4679-81d8-9286-fea0c9c2c11f" class="image"><a href="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-1-9d7beb25.png"><img style="width:155.03550720214844px" src="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-1-9d7beb25.png"/></a></figure></div><div id="149ba153-4679-80e0-94b1-f7765e0ed6e7" style="width:18.75%" class="column"><figure id="149ba153-4679-816c-b9fd-cb63f483204d" class="image"><a href="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-8f4373c4.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Incorporating%20Backgrounds_-8f4373c4.png"/></a></figure></div></div><hr id="149ba153-4679-803a-9cd1-de2fb0bcb143"/><p id="149ba153-4679-804f-8339-f52118d68f6d" class=""><strong>Transparent or solid background:</strong></p><div id="149ba153-4679-80be-be8e-ee10740b41a6" class="column-list"><div id="149ba153-4679-80f2-b6d2-fd352477e59a" style="width:43.75%" class="column"><p id="149ba153-4679-8022-bee1-dc25ce5f5362" class="">In cases where the subject is presented against a background of transparent or solid colors (such as white, black, blue, etc.), it is essential to ensure that the subject covers most of the image size. If necessary, it is better to crop the solid margins of the image to reduce the amount of transparency or solid color present.</p></div><div id="149ba153-4679-80cc-bee7-f51ef3554305" style="width:18.749999999999993%" class="column"><figure id="149ba153-4679-812f-9612-dbbaeef240a7" class="image"><a href="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_3-eff802b3.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_3-eff802b3.png"/></a></figure></div><div id="149ba153-4679-80bd-9538-d9cd927956bc" style="width:18.75%" class="column"><figure id="149ba153-4679-815b-85b7-fcd0717e1c2c" class="image"><a href="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_2-c6c103e8.png"><img style="width:160.9943084716797px" src="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_2-c6c103e8.png"/></a></figure></div><div id="149ba153-4679-8058-8f25-f86048c7eae3" style="width:18.749999999999996%" class="column"><figure id="149ba153-4679-811e-a25d-c2e423d07a0b" class="image"><a href="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_-04b520b5.png"><img style="width:142.49288940429688px" src="https://platform.bria.ai/assets/Transparent%20or%20solid%20background_-04b520b5.png"/></a></figure></div></div><hr id="149ba153-4679-8099-8f67-d210d474e908"/><p id="149ba153-4679-80ae-a0ac-d44a38c8b1de" class=""><strong>Consistent image style:</strong></p><p id="149ba153-4679-80da-a3b4-cdbb142ab538" class="">Ensure you don't mix styles within your dataset; for example, a dataset should not contain both animated cars and photo-realistic cars together..</p><div id="149ba153-4679-80f4-84fe-ddf0874ca9d0" class="column-list"><div id="149ba153-4679-81fa-a5db-f4fd5ff350e8" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81a2-8639-c2e2462d3d5e" class="image"><a href="https://platform.bria.ai/assets/Consistent%20image%20style_-cef545b2.png"><img style="width:160px" src="https://platform.bria.ai/assets/Consistent%20image%20style_-cef545b2.png"/></a></figure></div><div id="149ba153-4679-8172-9306-c8e724768450" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-810e-baeb-f5db484b8908" class="image"><a href="https://platform.bria.ai/assets/Consistent%20image%20style_2-fd7a1239.png"><img style="width:160px" src="https://platform.bria.ai/assets/Consistent%20image%20style_2-fd7a1239.png"/></a></figure></div><div id="149ba153-4679-813d-805e-eb32e4ac4797" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-8186-811f-fa8b4627c783" class="image"><a href="https://platform.bria.ai/assets/Consistent%20image%20style_3-a41423bd.png"><img style="width:160px" src="https://platform.bria.ai/assets/Consistent%20image%20style_3-a41423bd.png"/></a></figure></div></div><hr id="149ba153-4679-803e-9acb-ff295884c395"/><p id="149ba153-4679-8010-aa6d-c085e2f13e87" class=""><strong>Group of subjects:</strong></p><p id="149ba153-4679-8019-a3c2-c2b1eaae0575" class="">If your goal is to generate images featuring your subject in a group, it is advisable to include multiple examples of such groupings in the dataset.</p><div id="149ba153-4679-8098-a774-f84a3efd0903" class="column-list"><div id="149ba153-4679-818d-9d21-c5c0242eb5cc" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-819f-b03f-c84fce221e2b" class="image"><a href="https://platform.bria.ai/assets/Group%20Of%20subjects-8033aca4.png"><img style="width:160px" src="https://platform.bria.ai/assets/Group%20Of%20subjects-8033aca4.png"/></a></figure><p id="149ba153-4679-8070-adb7-cdd6cbf2ccfe" class="">
</p></div><div id="149ba153-4679-813c-9547-c863500a1c07" style="width:33.333333333333336%" class="column"><figure id="149ba153-4679-81b3-b77b-cf5eb6328663" class="image"><a href="https://platform.bria.ai/assets/Group%20Of%20subjects2-53e50c35.png"><img style="width:160px" src="https://platform.bria.ai/assets/Group%20Of%20subjects2-53e50c35.png"/></a></figure></div><div id="149ba153-4679-8194-a4c9-f4e55bbb66da" style="width:33.33333333333333%" class="column"><figure id="149ba153-4679-8192-b115-d22329ffc52c" class="image"><a href="https://platform.bria.ai/assets/Group%20Of%20subjects3-b1657952.png"><img style="width:160px" src="https://platform.bria.ai/assets/Group%20Of%20subjects3-b1657952.png"/></a></figure></div></div><p id="149ba153-4679-805e-b768-c76cce4719d6" class="">
</p><h3 id="149ba153-4679-8096-9ec3-cd37027f0d2c" class="">Icons</h3><p id="149ba153-4679-80bd-82a6-c61f709222a7" class="">When training a model for a specific icon style, it is crucial to provide images that contain the right information to guide the model. Users should upload 20-50 images, and the dataset should consist of a clear icons’ style within a specific domain.</p><p id="149ba153-4679-8033-a6e4-e54bc654b4eb" class="">The images in your dataset should consider multiple types of icons sharing the same style.</p><p id="149ba153-4679-8078-9445-d7434906fe88" class="">
</p><p id="149ba153-4679-8018-84ac-e32b04533b84" class=""><strong>Examples of common use cases:</strong></p><p id="149ba153-4679-805e-9b37-fea58f3c800e" class="">
</p><p id="149ba153-4679-80aa-9f57-d11afbed2357" class=""><strong>Share the same style:</strong></p><div id="149ba153-4679-8089-8363-c604d8c24c73" class="column-list"><div id="149ba153-4679-80ef-bb91-d359b40b9043" style="width:53.125%" class="column"><p id="149ba153-4679-8064-89c6-eee35a5fef5e" class="">Datasets can include a wide range of variations as long as they share the same icons style.</p></div><div id="149ba153-4679-80e7-8538-c11d4cf3d680" style="width:15.624999999999996%" class="column"><figure id="149ba153-4679-81b6-b970-cfb7bf6e8d8f" class="image"><a href="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_1-032bd2c7.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_1-032bd2c7.png"/></a></figure></div><div id="149ba153-4679-80c0-9658-fb03e4fe802f" style="width:15.625%" class="column"><figure id="149ba153-4679-8166-8408-e5bd118da43e" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%203.png"><img style="width:205.31959533691406px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%203.png"/></a></figure></div><div id="149ba153-4679-8092-8b2c-c9c04d8f5bff" style="width:15.624999999999996%" class="column"><figure id="149ba153-4679-8113-9848-c83279828237" class="image"><a href="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_2-a8cb6543.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Icons%20Share%20the%20same%20style_2-a8cb6543.png"/></a></figure></div></div><figure id="149ba153-4679-80d5-90c8-d21c2eb5d8a1" class="image">
</figure><hr id="149ba153-4679-808b-b8ad-c7a51791229c"/><p id="149ba153-4679-8082-b66e-d511c2ae8256" class="">
</p><p id="149ba153-4679-8038-8a78-f8c9d3f3efe2" class=""><strong>Define the style of the icons in details:</strong></p><div id="149ba153-4679-80ed-a82c-f3c95ef8df7f" class="column-list"><div id="149ba153-4679-807a-9870-ccf4cff0e58a" style="width:53.125%" class="column"><p id="149ba153-4679-805a-be40-e720d12344d0" class="">Ensure the description of the icon’s style is as detailed as possible.For example: vector illustration , line art, very thick continuous outlines, minimalistic illustration, vector drawn strokes, continuous strokes</p></div><div id="149ba153-4679-8027-a471-fa22df5d08a4" style="width:15.625%" class="column"><figure id="149ba153-4679-819f-98a9-f668a482ea17" class="image"><a href="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details-58dcef9a.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details-58dcef9a.png"/></a></figure><p id="149ba153-4679-803e-8bac-c09e88edbdb5" class="">
</p></div><div id="149ba153-4679-8090-9d2e-e6e7b59a3b36" style="width:15.624999999999995%" class="column"><figure id="149ba153-4679-8165-a0da-e1a2a5770039" class="image"><a href="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details4-5fcd011b.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details4-5fcd011b.png"/></a></figure></div><div id="149ba153-4679-80c9-8cb8-c1225dd474e9" style="width:15.625000000000004%" class="column"><figure id="149ba153-4679-81e0-8dc3-e896d4d77fbf" class="image"><a href="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details3-1f2a5bc2.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/Define%20the%20style%20of%20the%20icons%20in%20details3-1f2a5bc2.png"/></a></figure></div></div><hr id="149ba153-4679-809d-9a66-f14f1d92a8fa"/><p id="149ba153-4679-80d0-9269-e8a0178d6970" class="">
</p><p id="149ba153-4679-8076-b970-c0c561e75f39" class=""><strong>For SVG images, use simple 2D images for training:</strong></p><div id="149ba153-4679-8035-8bf0-df8d675feded" class="column-list"><div id="149ba153-4679-80a1-a255-cfdabcf1fe65" style="width:53.125%" class="column"><p id="149ba153-4679-8083-a81a-cb00ad54b1e1" class="">To create high-quality images in SVG format, use simple 2D images in your dataset. Images should not include many details, shading, or complex styling.</p></div><div id="149ba153-4679-80ac-b76d-e6c3d6133af4" style="width:15.625%" class="column"><figure id="149ba153-4679-816b-a26a-c26db2e3b11f" class="image"><a href="https://platform.bria.ai/assets/For%20SVG%20images_%20use%20simple%202D%20images%20for%20training-a7a99486.png"><img style="width:205.32669067382812px" src="https://platform.bria.ai/assets/For%20SVG%20images_%20use%20simple%202D%20images%20for%20training-a7a99486.png"/></a></figure><p id="149ba153-4679-803d-b89b-f52808dd543a" class="">
</p></div><div id="149ba153-4679-80ee-995c-e2940db8d14a" style="width:15.625%" class="column"><figure id="149ba153-4679-8177-9dc6-d858e6a87a81" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%204.png"><img style="width:205.31959533691406px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%204.png"/></a></figure></div><div id="149ba153-4679-8090-beab-e75220d742db" style="width:15.625%" class="column"><figure id="149ba153-4679-818d-abd4-ecd9f9da071b" class="image"><a href="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%205.png"><img style="width:205.31959533691406px" src="%5BBria-LoRa-FineTune%5D%206c6ceb0ec7a040e4b270a0ecb60585f0/image%205.png"/></a></figure></div></div><figure id="149ba153-4679-8007-9260-ed31688bfba2" class="image">
</figure><p id="8d7189d8-60e1-4105-84f3-6440f80acbd7" class="">
</p><h2 id="d7295af2-0fce-493f-8c0b-1e6271239248" class="">Captions / Prompts </h2><p id="3a38850f-51a5-46c9-80b0-0b6c108dfdb7" class="">WIP</p><p id="78fc3213-f449-4294-866a-07e37a656e3d" class="">
</p><h2 id="2313cc32-1a8b-4087-b2d3-db00048d0a22" class="">Compute</h2><p id="38d0bb7e-7484-4460-a2d4-dce103222a2d" class="">We run on Nvidia A10 GPU:</p><ul id="58a34fa4-d225-4089-8c90-681de2da4f1c" class="bulleted-list"><li style="list-style-type:disc">On AWS - <code>g5.xlarge</code> / <code>g5.12xlarge</code></li></ul><p id="e7e278d6-2196-4058-993a-4d0eee780804" class="">
</p><hr id="7bf2cb6d-0751-4bd3-a215-fd56676eb1d4"/><p id="153f6676-0e13-425d-a85f-66f31ab92e62" class="">
</p><p id="934a5f03-5959-4596-a305-ed1c1109eace" class="">For any additional questions please contact <code>bar@bria.ai</code> </p><p id="2283fb02-4e72-489f-9751-ec8f249f9ae2" class="">
</p></div></article><span class="sans" style="font-size:14px;padding-top:2em"></span></body></html> |