Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- Medical_Book.pdf +3 -0
- README.md +9 -12
- app.py +96 -0
- requirements.txt +13 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Medical_Book.pdf filter=lfs diff=lfs merge=lfs -text
|
Medical_Book.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753cd53b7a3020bbd91f05629b0e3ddcfb6a114d7bbedb22c2298b66f5dd00cc
|
3 |
+
size 16127037
|
README.md
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
-
|
2 |
-
title: Medical Chatbot Space
|
3 |
-
emoji: 📊
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: pink
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.34.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
short_description: A medical assistant chatbot
|
11 |
-
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🩺 Medical Chatbot using Mistral LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
A medical assistant chatbot using LangChain, FAISS, HuggingFace LoRA model, and Gradio.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
- Retrieval-Augmented Generation (RAG)
|
7 |
+
- Conversational context
|
8 |
+
- PDF ingestion (Medical_Book.pdf)
|
9 |
+
|
10 |
+
Built and deployed by Mamadou Saidou Baldé.
|
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
6 |
+
from langchain.document_loaders import PyPDFLoader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
+
from langchain.llms import HuggingFacePipeline
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
from langchain.chains.question_answering import load_qa_chain
|
14 |
+
from langchain.chains.llm import LLMChain
|
15 |
+
|
16 |
+
# Load PDF
|
17 |
+
loader = PyPDFLoader("Medical_Book.pdf")
|
18 |
+
documents = loader.load()
|
19 |
+
|
20 |
+
# Split text
|
21 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
22 |
+
all_splits = text_splitter.split_documents(documents)
|
23 |
+
|
24 |
+
# Embeddings
|
25 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
26 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
|
27 |
+
vectorstores = FAISS.from_documents(all_splits, embeddings)
|
28 |
+
|
29 |
+
# Load LLM with quantization
|
30 |
+
llm_model = "ritvik77/Medical_Doctor_AI_LoRA-Mistral-7B-Instruct_FullModel"
|
31 |
+
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(llm_model, quantization_config=bnb_config, trust_remote_code=True, use_cache=True, device_map="auto")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model, trust_remote_code=True)
|
34 |
+
tokenizer.pad_token = tokenizer.eos_token
|
35 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.7, top_p=0.9, do_sample=True)
|
36 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
37 |
+
|
38 |
+
# Prompt templates
|
39 |
+
condense_prompt = PromptTemplate(
|
40 |
+
input_variables=["question", "chat_history"],
|
41 |
+
template="""
|
42 |
+
You are a helpful medical assistant. Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question.
|
43 |
+
|
44 |
+
Chat History:
|
45 |
+
{chat_history}
|
46 |
+
|
47 |
+
Follow-up Question:
|
48 |
+
{question}
|
49 |
+
|
50 |
+
Standalone Question:"""
|
51 |
+
)
|
52 |
+
qa_prompt = PromptTemplate(
|
53 |
+
input_variables=["context", "question"],
|
54 |
+
template="""
|
55 |
+
Use the following context to answer the question.
|
56 |
+
|
57 |
+
Context:
|
58 |
+
{context}
|
59 |
+
|
60 |
+
Question:
|
61 |
+
{question}
|
62 |
+
|
63 |
+
Answer:
|
64 |
+
"""
|
65 |
+
)
|
66 |
+
question_generator = LLMChain(llm=llm, prompt=condense_prompt)
|
67 |
+
combine_docs_chain = load_qa_chain(llm=llm, chain_type="stuff", prompt=qa_prompt)
|
68 |
+
|
69 |
+
def chatbot_response(user_input, max_new_tokens, temperature, context_length):
|
70 |
+
pipe.model.config.max_new_tokens = int(max_new_tokens)
|
71 |
+
pipe.model.config.temperature = float(temperature)
|
72 |
+
pipe.model.config.context_length = int(context_length)
|
73 |
+
chain = ConversationalRetrievalChain(retriever=vectorstores.as_retriever(), combine_docs_chain=combine_docs_chain, question_generator=question_generator, return_source_documents=True)
|
74 |
+
chat_history = []
|
75 |
+
result = chain({"question": user_input, "chat_history": chat_history})
|
76 |
+
return f"<div style='max-height: 400px; overflow-y: auto;'>{result['answer']}</div>"
|
77 |
+
|
78 |
+
interface = gr.Interface(
|
79 |
+
fn=chatbot_response,
|
80 |
+
inputs=[
|
81 |
+
gr.Textbox(lines=2, placeholder="Type your question here...", label="Your Question", interactive=True),
|
82 |
+
gr.Slider(label="Max New Tokens", minimum=1, maximum=2000, value=150, step=1, interactive=True),
|
83 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.01, interactive=True),
|
84 |
+
gr.Slider(label="Context Length", minimum=100, maximum=4000, value=2000, step=1, interactive=True)
|
85 |
+
],
|
86 |
+
outputs=gr.HTML(label="Chatbot Response"),
|
87 |
+
title="🩺 MEDICAL Chatbot",
|
88 |
+
description="""
|
89 |
+
<div style='text-align: center;'>
|
90 |
+
<img src='https://cdn.dribbble.com/users/29678/screenshots/2407580/media/34ee4b818fd4ddb3a616c91ccf4d9cfc.png' alt='Medical Bot' width='100'>
|
91 |
+
<p>Check the responses from the Medical Llama 3-8B model!</p>
|
92 |
+
</div>
|
93 |
+
"""
|
94 |
+
)
|
95 |
+
|
96 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
langchain
|
5 |
+
langchain_community
|
6 |
+
langchain-huggingface
|
7 |
+
sentence-transformers
|
8 |
+
pypdf
|
9 |
+
faiss-cpu
|
10 |
+
bitsandbytes
|
11 |
+
accelerate
|
12 |
+
scikit-learn
|
13 |
+
typer==0.10.0
|