import gradio as gr import os import torch import yake import shutil import glob import ffmpeg import cv2 import numpy as np from datetime import datetime from gtts import gTTS from diffusers import StableDiffusionPipeline from deep_translator import GoogleTranslator import wikipediaapi from groq import Groq # ✅ Set API Key os.environ["GROQ_API_KEY"] = "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" # Replace with your API key client = Groq(api_key=os.environ["GROQ_API_KEY"]) def fetch_wikipedia_summary(topic): wiki_wiki = wikipediaapi.Wikipedia( user_agent="EducationalScriptApp/1.0", language="en" ) page = wiki_wiki.page(topic) return page.summary if page.exists() else "No Wikipedia summary available." def generate_script(topic, duration): try: factual_content = fetch_wikipedia_summary(topic) words_per_minute = 130 target_words = duration * words_per_minute response = client.chat.completions.create( messages=[{"role": "user", "content": f"Format the following factual content into a well-structured educational script in English with approximately {target_words} words: \n{factual_content}"}], model="llama-3.3-70b-versatile" ) return response.choices[0].message.content except Exception as e: return f"❌ Error in script generation: {str(e)}" # ✅ Function to Extract Keywords Using YAKE def extract_keywords(script): try: kw_extractor = yake.KeywordExtractor( lan="en", # Language n=3, # Max number of words in a keyword phrase (trigrams) dedupLim=0.9, # Reduce redundant phrases # top=10 # Extract top 10 keywords ) keywords = kw_extractor.extract_keywords(script) return ", ".join([kw[0] for kw in keywords]) # ✅ Extract only the keyword text except Exception as e: return f"❌ Error extracting keywords: {str(e)}" def save_keywords_file(keywords, topic): today = datetime.today().strftime('%Y_%b_%d') filename = f"Keywords/{topic}_Keyword_{today}.txt" os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w", encoding="utf-8") as f: f.write(keywords) return filename def translate_to_urdu(english_script): try: # ✅ Define a max chunk size (Google Translator has a limit) max_chunk_size = 4500 # Stay below 5000 to be safe chunks = [english_script[i:i + max_chunk_size] for i in range(0, len(english_script), max_chunk_size)] translated_chunks = [] for chunk in chunks: translated_chunk = GoogleTranslator(source='en', target='ur').translate(chunk) translated_chunks.append(translated_chunk) return " ".join(translated_chunks) # ✅ Join all translated chunks except Exception as e: return f"❌ Error in translation: {str(e)}" def save_english_file(content, topic): today = datetime.today().strftime('%Y_%b_%d') # Format: 2025_Feb_21 filename = f"English_Scripts/{topic}_Eng_{today}.txt" os.makedirs(os.path.dirname(filename), exist_ok=True) # Ensure directory exists with open(filename, "w", encoding="utf-8") as f: f.write(content) return filename def save_urdu_file(content, topic): today = datetime.today().strftime('%Y_%b_%d') filename = f"Urdu_Scripts/{topic}_Urdu_{today}.txt" os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w", encoding="utf-8") as f: f.write(content) return filename def save_final_urdu_file(topic, content): date_str = datetime.now().strftime("%Y_%b_%d") filename = f"Urdu_Final/{topic}_Urdu_Final_{date_str}.txt" # ✅ Corrected file path os.makedirs(os.path.dirname(filename), exist_ok=True) # ✅ Ensure the directory exists with open(filename, "w", encoding="utf-8") as f: f.write(content) return filename def finalize_process(): return "✅ Script Generation Completed Successfully!" def clear_old_files(): # ✅ Define all directories where files are stored directories = ["English_Scripts", "Urdu_Scripts", "Urdu_Final", "Keywords"] for directory in directories: if os.path.exists(directory): # ✅ Check if directory exists files = glob.glob(f"{directory}/*") # ✅ Get all files in the directory for file in files: try: os.remove(file) # ✅ Delete each file except Exception as e: print(f"❌ Error deleting {file}: {e}") return "", "", "", "", "" # ✅ Clear all textboxes in UI ####################################################################################### # Ensure required folders exist os.makedirs("generated_images", exist_ok=True) os.makedirs("output", exist_ok=True) # Load Stable Diffusion for image generation model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) pipe.safety_checker = None # Disable safety checker # Global variable to store generated TTS audio path global_audio_path = None ### 🗣️ TEXT-TO-SPEECH FUNCTION ### def text_to_speech(script_file): if script_file is None: return None, "⚠️ Please upload an Urdu script file!" with open(script_file.name, "r", encoding="utf-8") as f: urdu_text = f.read().strip() audio_path = "output/urdu_audio.mp3" tts = gTTS(text=urdu_text, lang="ur") tts.save(audio_path) global global_audio_path global_audio_path = audio_path return audio_path, "✅ Audio generated successfully!" ### 🏞️ IMAGE GENERATION FUNCTION ### def generate_images(script_file, num_images): if script_file is None: return None, "⚠️ Please upload a script file!" num_images = int(num_images) with open(script_file.name, "r", encoding="utf-8") as f: text_lines = f.read().split("\n\n") # Splitting scenes by double newlines image_paths = [] for i, scene in enumerate(text_lines[:num_images]): prompt = f"Scene {i+1}: {scene.strip()}" image = pipe(prompt).images[0] image_path = f"generated_images/image_{i+1}.png" image.save(image_path) image_paths.append(image_path) return image_paths, "✅ Images generated successfully!" ### 🎥 VIDEO CREATION FUNCTION ### def images_to_video(image_paths, fps=1): if not image_paths: return None frame = cv2.imread(image_paths[0]) height, width, layers = frame.shape video_path = "output/generated_video.mp4" fourcc = cv2.VideoWriter_fourcc(*"mp4v") video = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) for image in image_paths: frame = cv2.imread(image) video.write(frame) video.release() return video_path ### 🔊 AUDIO-VIDEO MERGE FUNCTION ### def merge_audio_video(video_path): if global_audio_path is None: return None, "⚠️ No audio found! Please generate Urdu TTS first." final_video_path = "output/final_video.mp4" video = ffmpeg.input(video_path) audio = ffmpeg.input(global_audio_path) ffmpeg.output(video, audio, final_video_path, vcodec="libx264", acodec="aac").run(overwrite_output=True) return final_video_path, "✅ Video with Urdu voice-over generated successfully!" ### 🎬 FINAL VIDEO GENERATION PIPELINE ### def generate_final_video(script_file, num_images): if script_file is None: return None, "⚠️ Please upload a script file for image generation!" image_paths, img_msg = generate_images(script_file, num_images) if not image_paths: return None, img_msg video_path = images_to_video(image_paths, fps=1) final_video_path, vid_msg = merge_audio_video(video_path) return final_video_path, vid_msg ### 🚀 GRADIO UI ### with gr.Blocks()as app: gr.Markdown("## # 🎬 AI-Powered Educational Video Generator") # TTS Section with gr.Tab("Script Generator"): topic_input = gr.Textbox(label="Enter Topic") duration_input = gr.Slider(minimum=1, maximum=30, step=1, label="Duration (minutes)") generate_button = gr.Button("Generate English Script") eng_output = gr.Textbox(label="Generated English Script", interactive=False) download_english_button = gr.Button("Download English Script") download_english_button.click(save_english_file, inputs=[eng_output, topic_input], outputs=[gr.File()]) # ✅ Keyword Extraction Section extract_keywords_btn = gr.Button("🔑 Extract Keywords") keyword_output = gr.Textbox(label="🔍 Extracted Keywords", interactive=True) download_keywords_btn = gr.Button("⬇️ Download Keywords") download_keywords_btn.click(save_keywords_file, inputs=[keyword_output, topic_input], outputs=[gr.File()]) translate_button = gr.Button("Generate Urdu Script") urdu_output = gr.Textbox(label="Translated Urdu Script", interactive=False, rtl=True) download_urdu_button = gr.Button("Download Urdu Script") download_urdu_button.click(save_urdu_file, inputs=[urdu_output, topic_input], outputs=[gr.File()]) final_edited_urdu_output = gr.Textbox(label="Edited Urdu Script", interactive=True, rtl=True) download_final_urdu_button = gr.Button("Download Final Urdu Script") download_final_urdu_button.click(save_final_urdu_file, inputs=[topic_input, final_edited_urdu_output], outputs=[gr.File()]) # ✅ Button Actions # generate_button.click(generate_script, inputs=[topic_input, duration_input], outputs=[eng_output]) generate_button.click(generate_script, inputs=[topic_input, duration_input], outputs=[eng_output]) extract_keywords_btn.click(extract_keywords, inputs=[eng_output], outputs=[keyword_output]) translate_button.click(translate_to_urdu, inputs=[eng_output], outputs=[urdu_output]) status_output = gr.Textbox(label="Status", interactive=False) finalize_button = gr.Button("Finalize Process") finalize_button.click(finalize_process, outputs=[status_output]) generate_button.click( lambda topic, duration: (*clear_old_files(), generate_script(topic, duration)), inputs=[topic_input, duration_input], outputs=[keyword_output, urdu_output, final_edited_urdu_output, status_output] ) # TTS Section with gr.Tab("🗣️ Urdu Text-to-Speech"): script_file_tts = gr.File(label="📂 Upload Urdu Script for Audio", type="filepath") generate_audio_btn = gr.Button("🎙️ Generate Audio", variant="primary") audio_output = gr.Audio(label="🔊 Urdu Speech Output", interactive=False) audio_status = gr.Textbox(label="ℹ️ Status", interactive=False) generate_audio_btn.click(text_to_speech, inputs=[script_file_tts], outputs=[audio_output, audio_status]) # Video Generation Section with gr.Tab("🎥 AI Video Generator"): script_file_video = gr.File(label="📂 Upload Urdu Script for Images", type="filepath") num_images = gr.Number(label="📸 Number of Scenes", value=3, minimum=1, maximum=10, step=1) generate_video_btn = gr.Button("🎬 Generate Video", variant="primary") video_output = gr.Video(label="🎞️ Generated Video") video_status = gr.Textbox(label="ℹ️ Status", interactive=False) generate_video_btn.click(generate_final_video, inputs=[script_file_video, num_images], outputs=[video_output, video_status]) app.launch()