Spaces:
Runtime error
Runtime error
| import spaces | |
| import torch | |
| import gradio as gr | |
| import yt_dlp as youtube_dl | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| import tempfile | |
| import os | |
| import time | |
| # Available models to choose from | |
| MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"] | |
| DEFAULT_MODEL = MODEL_OPTIONS[1] | |
| BATCH_SIZE = 8 | |
| FILE_LIMIT_MB = 1000 | |
| YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| # Function to initialize pipeline based on model selection | |
| def initialize_pipeline(model_name): | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=model_name, | |
| feature_extractor=model_name, | |
| chunk_length_s=30, | |
| device=device, | |
| trust_remote_code=True | |
| ) | |
| pipe.type = "seq2seq" | |
| return pipe | |
| # Initialize the pipeline with a default model (it will be updated after user selects one) | |
| pipe = initialize_pipeline(DEFAULT_MODEL) | |
| pipe.type = "seq2seq" | |
| def transcribe(inputs, selected_model): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| # Update the pipeline with the selected model | |
| pipe = initialize_pipeline(selected_model) | |
| text = pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
| return text | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def download_yt_audio(yt_url, filename): | |
| info_loader = youtube_dl.YoutubeDL() | |
| try: | |
| info = info_loader.extract_info(yt_url, download=False) | |
| except youtube_dl.utils.DownloadError as err: | |
| raise gr.Error(str(err)) | |
| file_length = info["duration_string"] | |
| file_h_m_s = file_length.split(":") | |
| file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
| if len(file_h_m_s) == 1: | |
| file_h_m_s.insert(0, 0) | |
| if len(file_h_m_s) == 2: | |
| file_h_m_s.insert(0, 0) | |
| file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
| if file_length_s > YT_LENGTH_LIMIT_S: | |
| yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
| file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
| raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
| ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
| with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
| try: | |
| ydl.download([yt_url]) | |
| except youtube_dl.utils.ExtractorError as err: | |
| raise gr.Error(str(err)) | |
| def yt_transcribe(yt_url, selected_model, max_filesize=75.0): | |
| html_embed_str = _return_yt_html_embed(yt_url) | |
| # Update the pipeline with the selected model | |
| pipe = initialize_pipeline(selected_model) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| filepath = os.path.join(tmpdirname, "video.mp4") | |
| download_yt_audio(yt_url, filepath) | |
| with open(filepath, "rb") as f: | |
| inputs = f.read() | |
| inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| text = pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
| return html_embed_str, text | |
| demo = gr.Blocks(theme=gr.themes.Ocean()) | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="microphone", type="filepath"), | |
| gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) | |
| ], | |
| outputs="text", | |
| title="Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
| gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) | |
| ], | |
| outputs="text", | |
| title="Transcribe Audio", | |
| description=( | |
| "Transcribe audio files with the click of a button! Select a model from the dropdown." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| yt_transcribe = gr.Interface( | |
| fn=yt_transcribe, | |
| inputs=[ | |
| gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
| gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) | |
| ], | |
| outputs=["html", "text"], | |
| title="Transcribe YouTube", | |
| description=( | |
| "Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
| gr.Markdown( | |
| "Disclaimer: This space currently runs on basic CPU hardware, so generation might take a bit longer. " | |
| "You can clone the repository and run it locally for better performance. " | |
| "Please refer to the [Hugging Face documentation](https://huggingface.co/docs/hub/spaces-overview#clone-the-repository) " | |
| "on how to clone the repository and run it locally. " | |
| "The model is not perfect and may make errors, so please use responsibly." | |
| ) | |
| demo.queue().launch(ssr_mode=False) | |