File size: 7,246 Bytes
9c2adc8
464f46b
 
 
 
 
 
9c2adc8
464f46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd8683
 
464f46b
 
4dd8683
 
 
 
464f46b
4dd8683
464f46b
 
 
 
 
 
 
4dd8683
464f46b
 
 
 
 
 
 
 
4dd8683
 
464f46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd8683
464f46b
 
 
 
 
 
 
4dd8683
464f46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
from llama_cpp import Llama
import torch
import os
from accelerate import Accelerator
import tensorflow as tf  # Import TensorFlow
import numpy as np  # For handling input data

# Set device for PyTorch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device set to:", device)

# Initialize the accelerator
accelerator = Accelerator()

class LocalInferenceClient:
    def __init__(self, model_name: str, model_path: str):
        """
        Initialize the inference client with the model.

        Args:
            model_name (str): The name of the model.
            model_path (str): The path to the model file or directory.
        """
        self.model_name = model_name
        self.model_path = model_path

        # Initialize the Llama model specifically for gguf
        self.model = Llama(model_path=model_path, n_ctx=2048, n_threads=8, n_gpu_layers=5)

        # Move the model to the appropriate device
        self.model = accelerator.prepare(self.model)

        # Load the TensorFlow Lite model
        self.tflite_interpreter = tf.lite.Interpreter(model_path='model.tflite')
        self.tflite_interpreter.allocate_tensors()

        # Get input and output tensors
        self.input_details = self.tflite_interpreter.get_input_details()
        self.output_details = self.tflite_interpreter.get_output_details()

    def text_generation(self, prompt: str, max_new_tokens: int, temperature: float, top_p: float) -> str:
        """
        Generate text based on the provided prompt.

        Args:
            prompt (str): The input prompt.
            max_new_tokens (int): The maximum number of tokens to generate.
            temperature (float): Sampling temperature.
            top_p (float): Nucleus sampling probability.

        Returns:
            str: The generated text.
        """
        # Use the Llama model for text generation
        response = self.model.create_chat_completion(
            messages=[{"role": "user", "content": prompt}],
            max_tokens=max_new_tokens,
            temperature=temperature,
            top_p=top_p
        )
        
        # Print the response to understand its structure
        print("Response from model:", response)
    
        # Access the content correctly based on the response structure
        if 'choices' in response and len(response['choices']) > 0:
            return response['choices'][0]['message']['content']  # Access the content key
        else:
            return "⚠️ Error: Unexpected response format."

    def run_tflite_model(self, input_data: np.ndarray) -> np.ndarray:
        """
        Run inference using the TensorFlow Lite model.

        Args:
            input_data (np.ndarray): Input data for the model.

        Returns:
            np.ndarray: Output data from the model.
        """
        # Set the input tensor
        self.tflite_interpreter.set_tensor(self.input_details[0]['index'], input_data)

        # Run the model
        self.tflite_interpreter.invoke()

        # Get the output tensor
        output_data = self.tflite_interpreter.get_tensor(self.output_details[0]['index'])
        return output_data

# Specify the model paths for gguf models
model_configs = {
    "Test": {
        "path": r"./test-model.gguf",
        "specs": """
            ## Lake 1 Chat Specifications
            - **Architecture**: Test
            - **Parameters**: IDK
            - **Capabilities**: test
            - **Intended Use**: test
        """
    }
}

# Set up a dictionary mapping model names to their clients
clients = {name: LocalInferenceClient(name, config['path']) for name, config in model_configs.items()}

# Presets for performance/quality tradeoffs
presets = {
    "Test": {
        "Fast": {"max_new_tokens": 100, "temperature": 1.0, "top_p": 0.9},
        "Normal": {"max_new_tokens": 200, "temperature": 0.7, "top_p": 0.95},
        "Quality": {"max_new_tokens": 300, "temperature": 0.5, "top_p": 0.90},
    }
}

# A system prompt for the model
system_messages = {
    "Test": "You are Lake 1 Chat, a powerful open-source reasoning model. Think carefully and answer step by step.",
    }

def generate_response(message: str, model_name: str, preset: str) -> str:
    """
    Generate a response based on the user's message.

    Args:
        message (str): The user's message.
        model_name (str): The name of the model to use.
        preset (str): The performance preset to apply.

    Returns:
        str: The generated response.
    """
    client = clients[model_name]
    params = presets[model_name][preset]
    system_msg = system_messages[model_name]
    prompt = f"{system_msg}\n\n:User      {message}\nAssistant:"
    return client.text_generation(
        prompt,
        max_new_tokens=params["max_new_tokens"],
        temperature=params["temperature"],
        top_p=params["top_p"]
    )

def handle_chat(message: str, history: list, model: str, preset: str) -> str:
    """
    Handle the chat interaction.

    Args:
        message (str): The user's message.
        history (list): The conversation history.
        model (str): The model to use.
        preset (str): The performance preset.

    Returns:
        str: The generated response.
    """
    try:
        return generate_response(message, model, preset)
    except Exception as e:
        return f"⚠️ Error: {str(e)}"

with gr.Blocks(title="BI CORP AI Assistant", theme="soft") as demo:
    gr.Markdown("# <center>Lake AI Assistant</center>")
    gr.Markdown("### <center>Powered by Lake 1 Chat</center>")
    
    with gr.Row():
        with gr.Column(scale=1):
            model_dropdown = gr.Dropdown(
                label="🤖 Model Selection",
                choices=list(clients.keys()),
                value="Lake 1 Chat",
                interactive=True
            )
            preset_dropdown = gr.Dropdown(
                label="⚙️ Performance Preset",
                choices=["Fast", "Normal", "Quality"],
                value="Normal",
                interactive=True
            )
            model_info_md = gr.Markdown(
                value=model_configs["Test"]["specs"],
                label="📝 Model Specifications"
            )
        
        with gr.Column(scale=3):
            chat_interface = gr.ChatInterface(
                fn=handle_chat,
                additional_inputs=[model_dropdown, preset_dropdown],
                examples=[["Explain quantum computing", "Test", "Normal"]],
                chatbot=gr.Chatbot(height=600, label="💬 Conversation", show_copy_button=True),
                textbox=gr.Textbox(placeholder="Type your message...", container=False, scale=7, autofocus=True),
                submit_btn=gr.Button("🚀 Send", variant="primary")
            )

    clear_button = gr.Button("🧹 Clear History")
    clear_button.click(
        fn=lambda: None,
        inputs=[],
        outputs=chat_interface.chatbot,
        queue=False
    )
    
    model_dropdown.change(
        fn=lambda model: model_configs[model]["specs"],
        inputs=model_dropdown,
        outputs=model_info_md,
        queue=False
    )

if __name__ == "__main__":
    demo.launch(server_port=7865)