Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------ | |
| # Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, esither express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ------------------------------------------------------------------------ | |
| """Engine utilities.""" | |
| import collections | |
| import functools | |
| import pickle | |
| import torch | |
| import numpy as np | |
| from tokenize_anything.utils import logging | |
| GLOBAL_DDP_GROUP = None | |
| def count_params(module, trainable=True, unit="M"): | |
| """Return the number of parameters.""" | |
| counts = [v.size().numel() for v in module.parameters() if v.requires_grad or (not trainable)] | |
| return sum(counts) / {"M": 1e6, "B": 1e9}[unit] | |
| def freeze_module(module): | |
| """Freeze parameters of given module.""" | |
| module.eval() | |
| for param in module.parameters(): | |
| param.requires_grad = False | |
| def get_device(index): | |
| """Create the available device object.""" | |
| if torch.cuda.is_available(): | |
| return torch.device("cuda", index) | |
| for device_type in ("mps",): | |
| try: | |
| if getattr(torch.backends, device_type).is_available(): | |
| return torch.device(device_type, index) | |
| except AttributeError: | |
| pass | |
| return torch.device("cpu") | |
| def get_param_groups(module, layer_lr_decay=1.0): | |
| """Separate parameters into groups.""" | |
| memo, groups, inner = {}, collections.OrderedDict(), module | |
| if isinstance(module, torch.nn.parallel.DistributedDataParallel): | |
| inner = module.module | |
| lr_scale_getter = None | |
| if layer_lr_decay < 1.0 and hasattr(inner.image_encoder, "get_lr_scale"): | |
| lr_scale_getter = functools.partial(inner.image_encoder.get_lr_scale, decay=layer_lr_decay) | |
| for name, param in module.named_parameters(): | |
| if not param.requires_grad: | |
| continue | |
| attrs = collections.OrderedDict() | |
| if lr_scale_getter: | |
| attrs["lr_scale"] = lr_scale_getter(name) | |
| memo[name] = param.shape | |
| no_weight_decay = not (name.endswith("weight") and param.dim() > 1) | |
| no_weight_decay = getattr(param, "no_weight_decay", no_weight_decay) | |
| if no_weight_decay: | |
| attrs["weight_decay"] = 0 | |
| group_name = "/".join(["%s:%s" % (v[0], v[1]) for v in list(attrs.items())]) | |
| if group_name not in groups: | |
| groups[group_name] = {"params": []} | |
| groups[group_name].update(attrs) | |
| groups[group_name]["params"].append(param) | |
| return list(groups.values()) | |
| def load_weights(module, weights_file, prefix_removed="", strict=True): | |
| """Load a weights file.""" | |
| if not weights_file: | |
| return | |
| if weights_file.endswith(".pkl"): | |
| with open(weights_file, "rb") as f: | |
| state_dict = pickle.load(f) | |
| for k, v in state_dict.items(): | |
| state_dict[k] = torch.from_numpy(v) if isinstance(v, np.ndarray) else v | |
| else: | |
| state_dict = torch.load(weights_file) | |
| if prefix_removed: | |
| new_state_dict = type(state_dict)() | |
| for k in list(state_dict.keys()): | |
| new_state_dict[k.replace(prefix_removed, "")] = state_dict.pop(k) | |
| state_dict = new_state_dict | |
| module.load_state_dict(state_dict, strict=strict) | |
| def manual_seed(seed, device_and_seed=None): | |
| """Set the cpu and device random seed.""" | |
| torch.manual_seed(seed) | |
| if device_and_seed is not None: | |
| device_index, device_seed = device_and_seed | |
| device_type = get_device(device_index).type | |
| np.random.seed(device_seed) | |
| if device_type in ("cuda", "mps"): | |
| getattr(torch, device_type).manual_seed(device_seed) | |
| def synchronize_device(device): | |
| """Synchronize the computation of device.""" | |
| if device.type in ("cuda", "mps"): | |
| getattr(torch, device.type).synchronize(device) | |
| def create_ddp_group(cfg, ranks=None, devices=None, num_nodes=1): | |
| """Create group for data parallelism.""" | |
| if not torch.distributed.is_initialized(): | |
| torch.distributed.init_process_group(backend="nccl") | |
| world_rank = torch.distributed.get_rank() | |
| ranks = ranks if ranks else [i for i in range(cfg.NUM_GPUS)] | |
| logging.set_root(world_rank == ranks[0]) | |
| devices_per_node = len(ranks) // num_nodes | |
| devices = devices if devices else [i % devices_per_node for i in range(len(ranks))] | |
| cfg.GPU_ID = devices[world_rank] | |
| torch.cuda.set_device(cfg.GPU_ID) | |
| global GLOBAL_DDP_GROUP | |
| GLOBAL_DDP_GROUP = torch.distributed.new_group(ranks) | |
| return GLOBAL_DDP_GROUP | |
| def get_ddp_group(): | |
| """Return the process group for data parallelism.""" | |
| return GLOBAL_DDP_GROUP | |
| def get_ddp_rank(): | |
| """Return the rank in the data parallelism group.""" | |
| ddp_group = get_ddp_group() | |
| if ddp_group is None: | |
| return 0 | |
| return torch.distributed.get_rank(ddp_group) | |
| def apply_ddp_group(module): | |
| """Apply data parallelism group for given module.""" | |
| ddp_group = get_ddp_group() | |
| if ddp_group is None: | |
| return module | |
| return torch.nn.parallel.DistributedDataParallel(module, process_group=ddp_group) | |