File size: 20,028 Bytes
b3cdca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import streamlit as st
import requests
import tempfile
import os
import subprocess
import speech_recognition as sr
from pydub import AudioSegment
import re
from typing import Dict, Tuple
import time

# Configure Streamlit page
st.set_page_config(
    page_title="English Accent Detector | REM Waste",
    page_icon="🎀",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main > div {
        padding-top: 2rem;
    }
    .stButton > button {
        width: 100%;
        border-radius: 10px;
        border: none;
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        color: white;
        font-weight: bold;
        padding: 0.75rem;
    }
    .metric-container {
        background: #f0f2f6;
        padding: 1rem;
        border-radius: 10px;
        text-align: center;
    }
</style>
""", unsafe_allow_html=True)

class AccentDetector:
    """Streamlined accent detection for English speech analysis"""
    
    def __init__(self):
        self.accent_patterns = {
            'American': {
                'keywords': ['gonna', 'wanna', 'gotta', 'kinda', 'sorta', 'yeah', 'awesome', 'dude'],
                'vocabulary': ['elevator', 'apartment', 'garbage', 'vacation', 'cookie', 'candy', 'mom', 'color'],
                'phrases': ['you know', 'like totally', 'for sure', 'right now']
            },
            'British': {
                'keywords': ['brilliant', 'lovely', 'quite', 'rather', 'chap', 'bloody', 'bloke', 'cheers'],
                'vocabulary': ['lift', 'flat', 'rubbish', 'holiday', 'biscuit', 'queue', 'mum', 'colour'],
                'phrases': ['i say', 'good heavens', 'how do you do', 'spot on']
            },
            'Australian': {
                'keywords': ['mate', 'bloody', 'crikey', 'reckon', 'fair dinkum', 'bonkers', 'ripper'],
                'vocabulary': ['arvo', 'brekkie', 'servo', 'bottle-o', 'mozzie', 'barbie', 'ute'],
                'phrases': ['no worries', 'good on ya', 'she\'ll be right', 'too right']
            },
            'Canadian': {
                'keywords': ['eh', 'about', 'house', 'out', 'sorry', 'hoser', 'beauty'],
                'vocabulary': ['toque', 'hydro', 'washroom', 'parkade', 'chesterfield', 'serviette'],
                'phrases': ['you bet', 'take off', 'give\'r', 'double double']
            },
            'South African': {
                'keywords': ['ag', 'man', 'hey', 'lekker', 'eish', 'shame', 'howzit'],
                'vocabulary': ['robot', 'bakkie', 'boerewors', 'biltong', 'braai', 'veld'],
                'phrases': ['just now', 'now now', 'is it', 'sharp sharp']
            }
        }
    
    @st.cache_data
    def download_video(_self, url: str) -> str:
        """Download video with caching, including Loom/YouTube support and debug output"""
        try:
            headers = {
                'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
            }
            # YouTube support (including Shorts)
            if 'youtube.com' in url or 'youtu.be' in url:
                try:
                    import yt_dlp
                except ImportError:
                    raise Exception("yt-dlp is required for YouTube downloads. Please install with 'pip install yt-dlp'.")
                # Use yt-dlp to download best audio to a temp directory, let yt-dlp pick the filename
                tmpdir = tempfile.mkdtemp()
                ydl_opts = {
                    'format': 'bestaudio[ext=m4a]/bestaudio/best',
                    'outtmpl': f'{tmpdir}/%(id)s.%(ext)s',
                    'quiet': True,
                    'noplaylist': True,
                    'postprocessors': [{
                        'key': 'FFmpegExtractAudio',
                        'preferredcodec': 'wav',
                        'preferredquality': '192',
                    }],
                    'ffmpeg_location': '/opt/homebrew/bin/ffmpeg',
                    'overwrites': True,
                }
                try:
                    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                        info = ydl.extract_info(url, download=True)
                    # Find the resulting .wav file
                    for f in os.listdir(tmpdir):
                        if f.endswith('.wav'):
                            # Move the file to a permanent temp location so it persists after this function
                            final_temp = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
                            final_temp.close()
                            with open(os.path.join(tmpdir, f), 'rb') as src, open(final_temp.name, 'wb') as dst:
                                dst.write(src.read())
                            return final_temp.name
                    raise Exception("yt-dlp did not produce a valid audio file. Try another video or update yt-dlp/ffmpeg.")
                except Exception as e:
                    raise Exception(f"yt-dlp failed: {str(e)}. Try updating yt-dlp and ffmpeg.")
            # Loom support (fallback: try to extract video from page HTML)
            if 'loom.com' in url:
                resp = requests.get(url, headers=headers, timeout=30)
                if resp.status_code != 200:
                    raise Exception("Failed to fetch Loom page")
                html = resp.text
                import re
                match = re.search(r'src="([^"]+\.mp4)"', html)
                if not match:
                    match = re.search(r'https://cdn\.loom\.com/sessions/[^"\s]+\.mp4', html)
                if not match:
                    raise Exception("Could not extract Loom video stream URL from page HTML")
                video_url = match.group(1)
                url = video_url
            # Download video (Loom or direct)
            response = requests.get(url, headers=headers, stream=True, timeout=60)
            response.raise_for_status()
            with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        temp_file.write(chunk)
                return temp_file.name
        except Exception as e:
            raise Exception(f"Download failed: {str(e)}")
    
    def extract_audio_simple(self, video_path: str) -> str:
        """Robust audio extraction: handles mp3, wav, mp4, etc."""
        try:
            import os
            from pydub import AudioSegment
            ext = os.path.splitext(video_path)[1].lower()
            audio_path = video_path.rsplit('.', 1)[0] + '.wav'
            # If already wav, use pydub directly
            if ext == '.wav':
                audio = AudioSegment.from_wav(video_path)
            else:
                audio = AudioSegment.from_file(video_path)
            audio = audio.set_frame_rate(16000).set_channels(1)
            if len(audio) > 120000:
                audio = audio[:120000]
            audio.export(audio_path, format="wav")
            return audio_path
        except Exception as e:
            raise Exception(f"Audio extraction failed: {str(e)}")
    
    def transcribe_audio(self, audio_path: str) -> str:
        """Transcribe with error handling"""
        try:
            r = sr.Recognizer()
            r.energy_threshold = 300
            r.dynamic_energy_threshold = True
            
            with sr.AudioFile(audio_path) as source:
                r.adjust_for_ambient_noise(source, duration=0.5)
                audio_data = r.record(source)
            
            # Try Google Speech Recognition
            text = r.recognize_google(audio_data, language='en-US')
            return text.lower()
            
        except sr.UnknownValueError:
            raise Exception("Could not understand the audio clearly")
        except sr.RequestError as e:
            raise Exception(f"Speech recognition service error: {str(e)}")
        except Exception as e:
            raise Exception(f"Transcription failed: {str(e)}")
    
    def analyze_patterns(self, text: str) -> Dict[str, float]:
        """Enhanced pattern analysis"""
        scores = {}
        words = text.split()
        word_count = max(len(words), 1)
        
        for accent, patterns in self.accent_patterns.items():
            score = 0.0
            total_matches = 0
            
            # Keywords (high weight)
            for keyword in patterns['keywords']:
                if keyword in text:
                    score += 20.0
                    total_matches += 1
            
            # Vocabulary (medium weight)  
            for vocab in patterns['vocabulary']:
                if vocab in text:
                    score += 15.0
                    total_matches += 1
            
            # Phrases (high weight)
            for phrase in patterns['phrases']:
                if phrase in text:
                    score += 25.0
                    total_matches += 1
            
            # Normalize and add base confidence
            if total_matches > 0:
                score = min(score * (total_matches / word_count) * 50, 95.0)
            else:
                score = self._get_base_score(text, accent)
            
            scores[accent] = round(max(score, 5.0), 1)
        
        return scores
    
    def _get_base_score(self, text: str, accent: str) -> float:
        """Base scoring for general patterns"""
        base_scores = {
            'American': 30.0,
            'British': 20.0, 
            'Australian': 15.0,
            'Canadian': 18.0,
            'South African': 12.0
        }
        
        score = base_scores.get(accent, 15.0)
        
        # Spelling adjustments
        if accent == 'British':
            if any(word in text for word in ['colour', 'favour', 'centre', 'theatre']):
                score += 25.0
        elif accent == 'American':
            if any(word in text for word in ['color', 'favor', 'center', 'theater']):
                score += 25.0
        
        return min(score, 45.0)
    
    def classify_accent(self, scores: Dict[str, float]) -> Tuple[str, float, str]:
        """Classify and explain results"""
        if not scores:
            return "Unknown", 0.0, "No speech detected"
        
        # Get top result
        top_accent = max(scores.items(), key=lambda x: x[1])
        accent, confidence = top_accent
        
        # Generate explanation
        if confidence < 25:
            explanation = "Low confidence - speech patterns are not strongly distinctive"
        elif confidence < 50:
            explanation = f"Moderate confidence in {accent} accent based on some linguistic markers"
        elif confidence < 75:
            explanation = f"Good confidence in {accent} accent with clear characteristic patterns"
        else:
            explanation = f"High confidence in {accent} accent with strong linguistic evidence"
        
        return accent, confidence, explanation

# Initialize detector
@st.cache_resource
def get_detector():
    return AccentDetector()

def main():
    # Header
    st.title("🎀 English Accent Detection Tool")
    st.markdown("**AI-powered accent analysis for English speech | Built for REM Waste**")
    
    # Description
    with st.expander("ℹ️ How it works", expanded=False):
        st.markdown("""
        1. **Input**: Paste a public video URL (MP4, Loom, YouTube, etc.)
        2. **Processing**: Extract audio β†’ Transcribe speech β†’ Analyze patterns
        3. **Output**: Accent classification + confidence score + explanation
        
        **Supported Accents**: American, British, Australian, Canadian, South African
        """)
    
    # Input section
    st.subheader("πŸ“Ή Video Input")
    
    # Sample URLs for testing
    with st.expander("πŸ§ͺ Test with sample videos"):
        st.markdown("""
        **Sample URLs for testing:**
        - `https://sample-videos.com/zip/10/mp4/SampleVideo_1280x720_1mb.mp4`
        - `https://www.learningcontainer.com/wp-content/uploads/2020/05/sample-mp4-file.mp4`
        - Or any public Loom/YouTube video URL
        """)
    
    video_url = st.text_input(
        "Enter video URL:",
        placeholder="https://example.com/video.mp4",
        help="Must be a publicly accessible video URL"
    )
    
    # Process button
    if st.button("πŸš€ Analyze Accent", type="primary"):
        if not video_url.strip():
            st.error("⚠️ Please enter a video URL")
            return
        
        if not video_url.startswith(('http://', 'https://')):
            st.error("⚠️ Please enter a valid URL starting with http:// or https://")
            return
        
        # Initialize detector and progress tracking
        detector = get_detector()
        temp_files = []
        
        try:
            # Progress bar
            progress_bar = st.progress(0)
            status_text = st.empty()
            
            # Step 1: Download video
            status_text.text("πŸ“₯ Downloading video...")
            progress_bar.progress(20)
            video_path = detector.download_video(video_url)
            temp_files.append(video_path)
            
            # Step 2: Extract audio
            status_text.text("🎡 Extracting audio...")
            progress_bar.progress(50)
            audio_path = detector.extract_audio_simple(video_path)
            temp_files.append(audio_path)
            
            # Step 3: Transcribe
            status_text.text("🎀 Transcribing speech...")
            progress_bar.progress(75)
            transcript = detector.transcribe_audio(audio_path)
            
            # Step 4: Analyze
            status_text.text("πŸ” Analyzing accent patterns...")
            progress_bar.progress(90)
            scores = detector.analyze_patterns(transcript)
            accent, confidence, explanation = detector.classify_accent(scores)
            
            # Complete
            progress_bar.progress(100)
            status_text.text("βœ… Analysis complete!")
            time.sleep(0.5)
            
            # Clear progress indicators
            progress_bar.empty()
            status_text.empty()
            
            # Display results
            st.success("πŸŽ‰ **Analysis Complete!**")
            
            # Main metrics
            col1, col2, col3 = st.columns(3)
            
            with col1:
                st.markdown(f"""
                <div class="metric-container">
                    <h3>πŸ—£οΈ Detected Accent</h3>
                    <h2 style="color: #667eea;">{accent}</h2>
                </div>
                """, unsafe_allow_html=True)
            
            with col2:
                st.markdown(f"""
                <div class="metric-container">
                    <h3>🎯 Confidence</h3>
                    <h2 style="color: #764ba2;">{confidence}%</h2>
                </div>
                """, unsafe_allow_html=True)
            
            with col3:
                # Get transcript length for quality indicator
                word_count = len(transcript.split())
                quality = "High" if word_count > 50 else "Medium" if word_count > 20 else "Low"
                st.markdown(f"""
                <div class="metric-container">
                    <h3>πŸ“Š Data Quality</h3>
                    <h2 style="color: #28a745;">{quality}</h2>
                    <small>{word_count} words</small>
                </div>
                """, unsafe_allow_html=True)
            
            st.markdown("---")
            
            # Explanation
            st.subheader("πŸ“ Analysis Summary")
            st.info(explanation)
            
            # Transcript
            st.subheader("πŸ“„ Transcribed Speech")
            st.text_area(
                "Full transcript:",
                transcript,
                height=120,
                help="This is what the AI heard from the video"
            )
            
            # Detailed scores
            st.subheader("πŸ“Š All Accent Scores")
            
            # Create a more visual representation
            for accent_name, score in sorted(scores.items(), key=lambda x: x[1], reverse=True):
                # Create progress bar for each accent
                col_name, col_bar, col_score = st.columns([2, 6, 1])
                
                with col_name:
                    st.write(f"**{accent_name}**")
                
                with col_bar:
                    st.progress(score / 100)
                
                with col_score:
                    st.write(f"{score}%")
            
            # Additional insights
            if confidence > 60:
                st.success(f"🎯 **Strong Detection**: The {accent} accent markers are clearly present in the speech.")
            elif confidence > 40:
                st.warning(f"⚠️ **Moderate Detection**: Some {accent} patterns detected, but results may vary with longer audio.")
            else:
                st.info("πŸ’‘ **Tip**: Longer speech samples (30+ seconds) generally provide more accurate results.")
            
        except Exception as e:
            st.error(f"❌ **Processing Error**: {str(e)}")
            st.info("""
            **Troubleshooting Tips:**
            - Ensure the video URL is publicly accessible
            - Try a different video format or shorter video
            - Make sure the video contains clear English speech
            - Check your internet connection
            """)
        
        finally:
            # Cleanup temp files
            for temp_file in temp_files:
                try:
                    if os.path.exists(temp_file):
                        os.remove(temp_file)
                except:
                    pass
    
    # Footer information
    st.markdown("---")
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("""
        **πŸ”§ Technical Details**
        - Audio processing: Up to 2 minutes
        - Speech recognition: Google API
        - Analysis: Pattern matching + linguistics
        - Processing time: ~30-90 seconds
        """)
    
    with col2:
        st.markdown("""
        **πŸ“‹ Requirements**
        - Public video URLs only
        - Clear English speech preferred
        - Supports MP4, MOV, AVI formats
        - Works with Loom, YouTube, direct links
        """)
    
    # API information
    with st.expander("πŸ”— API Usage"):
        st.code("""
# Python API usage example
from accent_detector import AccentDetector

detector = AccentDetector()
result = detector.process_video("https://your-video.com/file.mp4")

print(f"Accent: {result['accent']}")
print(f"Confidence: {result['confidence']}%")
        """, language="python")
    
    # About section
    with st.expander("ℹ️ About This Tool"):
        st.markdown("""
        **Built for REM Waste Interview Challenge**
        
        This accent detection tool analyzes English speech patterns to classify regional accents. 
        It's designed for hiring automation systems that need to evaluate spoken English proficiency.
        
        **Algorithm Overview:**
        - Extracts audio from video files
        - Transcribes speech using Google Speech Recognition
        - Analyzes linguistic patterns, vocabulary, and pronunciation markers
        - Provides confidence scores based on pattern strength
        
        **Accuracy Notes:**
        - Best results with 30+ seconds of clear speech
        - Confidence scores reflect pattern strength, not absolute accuracy
        - Designed for screening purposes, not definitive classification
        
        **Privacy & Ethics:**
        - No audio/video data is stored permanently
        - Temporary files are automatically deleted
        - Tool is intended for voluntary language assessment only
        """)

if __name__ == "__main__":
    main()