Update app.py
Browse files
app.py
CHANGED
|
@@ -7,41 +7,16 @@ import torch
|
|
| 7 |
import faiss
|
| 8 |
import numpy as np
|
| 9 |
from gtts import gTTS
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
recognizer = sr.Recognizer()
|
| 14 |
-
with sr.AudioFile(audio_file) as source:
|
| 15 |
-
audio = recognizer.record(source)
|
| 16 |
-
try:
|
| 17 |
-
text = recognizer.recognize_google(audio)
|
| 18 |
-
return text
|
| 19 |
-
except sr.UnknownValueError:
|
| 20 |
-
return "Sorry, I did not understand the audio"
|
| 21 |
-
except sr.RequestError:
|
| 22 |
-
return "Sorry, there was a problem with the request"
|
| 23 |
-
|
| 24 |
-
# Function to extract text from a PDF file
|
| 25 |
-
def extract_text_from_pdf(pdf_file):
|
| 26 |
-
text = ""
|
| 27 |
-
pdf_document = fitz.open(pdf_file)
|
| 28 |
-
for page_num in range(len(pdf_document)):
|
| 29 |
-
page = pdf_document.load_page(page_num)
|
| 30 |
-
text += page.get_text()
|
| 31 |
-
return text
|
| 32 |
-
|
| 33 |
-
# Function to embed text using a transformer model
|
| 34 |
-
def embed_text(texts, model, tokenizer):
|
| 35 |
-
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True)
|
| 36 |
-
with torch.no_grad():
|
| 37 |
-
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
|
| 38 |
-
return embeddings
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
tts = gTTS(text=text, lang='en')
|
| 43 |
-
tts.save(output_file)
|
| 44 |
-
return output_file
|
| 45 |
|
| 46 |
# Initialize model and tokenizer
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
@@ -52,7 +27,7 @@ dimension = 768 # Size of BERT embeddings
|
|
| 52 |
index = faiss.IndexFlatL2(dimension)
|
| 53 |
|
| 54 |
# Folder path containing PDFs
|
| 55 |
-
pdf_folder_path = "
|
| 56 |
|
| 57 |
# Read all PDF files from the specified folder
|
| 58 |
pdf_paths = [os.path.join(pdf_folder_path, f) for f in os.listdir(pdf_folder_path) if f.endswith('.pdf')]
|
|
@@ -66,26 +41,28 @@ for path in pdf_paths:
|
|
| 66 |
embeddings = embed_text(texts, model, tokenizer)
|
| 67 |
index.add(embeddings)
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
text = audio_to_text(audio_file)
|
| 79 |
-
st.write("Voice command:", text)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
query_embedding = embed_text([text], model, tokenizer)
|
| 83 |
-
D, I = index.search(query_embedding, k=1) # Search for the most similar advice
|
| 84 |
-
closest_text = texts[I[0][0]]
|
| 85 |
-
|
| 86 |
-
st.write("Advice:", closest_text)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
output_path = text_to_speech(closest_text, output_file)
|
| 91 |
-
st.audio(output_path)
|
|
|
|
| 7 |
import faiss
|
| 8 |
import numpy as np
|
| 9 |
from gtts import gTTS
|
| 10 |
+
import io
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from flask import Flask, request, jsonify
|
| 13 |
+
from werkzeug.utils import secure_filename
|
| 14 |
|
| 15 |
+
# Initialize Streamlit components
|
| 16 |
+
st.title("Parenting Guide App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# HTML component for the recording interface
|
| 19 |
+
st.components.v1.html(open("audio_recorder.html").read(), height=600)
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Initialize model and tokenizer
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
| 27 |
index = faiss.IndexFlatL2(dimension)
|
| 28 |
|
| 29 |
# Folder path containing PDFs
|
| 30 |
+
pdf_folder_path = "pdfs"
|
| 31 |
|
| 32 |
# Read all PDF files from the specified folder
|
| 33 |
pdf_paths = [os.path.join(pdf_folder_path, f) for f in os.listdir(pdf_folder_path) if f.endswith('.pdf')]
|
|
|
|
| 41 |
embeddings = embed_text(texts, model, tokenizer)
|
| 42 |
index.add(embeddings)
|
| 43 |
|
| 44 |
+
# Define Flask app to handle audio uploads
|
| 45 |
+
app = Flask(__name__)
|
| 46 |
+
|
| 47 |
+
@app.route('/upload-audio', methods=['POST'])
|
| 48 |
+
def upload_audio():
|
| 49 |
+
audio_file = request.files['audio']
|
| 50 |
+
if audio_file:
|
| 51 |
+
audio_file.save('temp_audio.wav')
|
| 52 |
+
text = audio_to_text('temp_audio.wav')
|
| 53 |
|
| 54 |
+
# Find relevant advice
|
| 55 |
+
query_embedding = embed_text([text], model, tokenizer)
|
| 56 |
+
D, I = index.search(query_embedding, k=1) # Search for the most similar advice
|
| 57 |
+
closest_text = texts[I[0][0]]
|
| 58 |
|
| 59 |
+
# Convert advice to speech
|
| 60 |
+
output_file = "advice.mp3"
|
| 61 |
+
output_path = text_to_speech(closest_text, output_file)
|
| 62 |
|
| 63 |
+
return jsonify({'status': 'success', 'audio': output_file})
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
return jsonify({'status': 'error', 'message': 'No audio file received'})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
if __name__ == '__main__':
|
| 68 |
+
app.run(debug=True)
|
|
|
|
|
|