Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import speech_recognition as sr
|
| 3 |
+
import fitz # PyMuPDF
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
import torch
|
| 6 |
+
import faiss
|
| 7 |
+
import numpy as np
|
| 8 |
+
from gtts import gTTS
|
| 9 |
+
from pydub import AudioSegment
|
| 10 |
+
from groq import Groq
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
# Load environment variables from .env file
|
| 15 |
+
load_dotenv()
|
| 16 |
+
|
| 17 |
+
# Initialize Groq API client
|
| 18 |
+
client = Groq(
|
| 19 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Initialize model and tokenizer for embedding
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 24 |
+
model = AutoModel.from_pretrained("bert-base-uncased")
|
| 25 |
+
|
| 26 |
+
# Initialize vector database
|
| 27 |
+
dimension = 768 # Size of BERT embeddings
|
| 28 |
+
index = faiss.IndexFlatL2(dimension)
|
| 29 |
+
|
| 30 |
+
# Folder path containing PDFs
|
| 31 |
+
pdf_folder_path = "pdfsforRAG"
|
| 32 |
+
|
| 33 |
+
# Function to convert audio file to text
|
| 34 |
+
def audio_to_text(audio_file_path):
|
| 35 |
+
recognizer = sr.Recognizer()
|
| 36 |
+
with sr.AudioFile(audio_file_path) as source:
|
| 37 |
+
audio = recognizer.record(source)
|
| 38 |
+
try:
|
| 39 |
+
text = recognizer.recognize_google(audio)
|
| 40 |
+
return text
|
| 41 |
+
except sr.UnknownValueError:
|
| 42 |
+
return "Sorry, I did not understand the audio"
|
| 43 |
+
except sr.RequestError:
|
| 44 |
+
return "Sorry, there was a problem with the request"
|
| 45 |
+
|
| 46 |
+
# Function to convert audio to WAV format
|
| 47 |
+
def convert_to_wav(audio_file_path):
|
| 48 |
+
audio = AudioSegment.from_file(audio_file_path)
|
| 49 |
+
wav_path = "temp_audio.wav"
|
| 50 |
+
audio.export(wav_path, format="wav")
|
| 51 |
+
return wav_path
|
| 52 |
+
|
| 53 |
+
# Function to extract text from a PDF file
|
| 54 |
+
def extract_text_from_pdf(pdf_file):
|
| 55 |
+
text = ""
|
| 56 |
+
pdf_document = fitz.open(pdf_file)
|
| 57 |
+
for page_num in range(len(pdf_document)):
|
| 58 |
+
page = pdf_document.load_page(page_num)
|
| 59 |
+
text += page.get_text()
|
| 60 |
+
return text
|
| 61 |
+
|
| 62 |
+
# Function to embed text using a transformer model
|
| 63 |
+
def embed_text(texts, model, tokenizer):
|
| 64 |
+
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True)
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
|
| 67 |
+
return embeddings
|
| 68 |
+
|
| 69 |
+
# Function to convert text to speech
|
| 70 |
+
def text_to_speech(text, output_file):
|
| 71 |
+
tts = gTTS(text=text, lang='en')
|
| 72 |
+
tts.save(output_file)
|
| 73 |
+
return output_file
|
| 74 |
+
|
| 75 |
+
# Read all PDF files from the specified folder
|
| 76 |
+
pdf_paths = [os.path.join(pdf_folder_path, f) for f in os.listdir(pdf_folder_path) if f.endswith('.pdf')]
|
| 77 |
+
|
| 78 |
+
texts = []
|
| 79 |
+
for path in pdf_paths:
|
| 80 |
+
pdf_text = extract_text_from_pdf(path)
|
| 81 |
+
texts.append(pdf_text)
|
| 82 |
+
|
| 83 |
+
# Embed PDF texts and add to vector database
|
| 84 |
+
embeddings = embed_text(texts, model, tokenizer)
|
| 85 |
+
index.add(embeddings)
|
| 86 |
+
|
| 87 |
+
# Gradio Interface
|
| 88 |
+
def process_audio(audio_file_path):
|
| 89 |
+
# Convert audio to WAV format if needed
|
| 90 |
+
wav_path = convert_to_wav(audio_file_path)
|
| 91 |
+
|
| 92 |
+
# Convert audio to text
|
| 93 |
+
text = audio_to_text(wav_path)
|
| 94 |
+
|
| 95 |
+
# Generate a response using the Groq API
|
| 96 |
+
chat_completion = client.chat.completions.create(
|
| 97 |
+
messages=[
|
| 98 |
+
{
|
| 99 |
+
"role": "user",
|
| 100 |
+
"content": text,
|
| 101 |
+
}
|
| 102 |
+
],
|
| 103 |
+
model="llama3-8b-8192",
|
| 104 |
+
)
|
| 105 |
+
response = chat_completion.choices[0].message.content
|
| 106 |
+
|
| 107 |
+
# Convert advice to speech
|
| 108 |
+
output_file = "advice.mp3"
|
| 109 |
+
output_path = text_to_speech(response, output_file)
|
| 110 |
+
|
| 111 |
+
return response, output_path
|
| 112 |
+
|
| 113 |
+
# Define Gradio interface
|
| 114 |
+
iface = gr.Interface(
|
| 115 |
+
fn=process_audio,
|
| 116 |
+
inputs=gr.Audio(type="filepath"), # Handle file paths
|
| 117 |
+
outputs=[gr.Textbox(label="Advice"), gr.Audio(label="Advice Audio")]
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Launch the Gradio app
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
iface.launch()
|