Spaces:
Build error
Build error
| import os | |
| from argparse import Namespace | |
| from tqdm import tqdm | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torch.utils.data import DataLoader | |
| import sys | |
| sys.path.append(".") | |
| sys.path.append("..") | |
| from configs import data_configs | |
| from datasets.inference_dataset import InferenceDataset | |
| from utils.common import tensor2im, log_input_image | |
| from options.test_options import TestOptions | |
| from models.psp import pSp | |
| def run(): | |
| test_opts = TestOptions().parse() | |
| if test_opts.resize_factors is not None: | |
| factors = test_opts.resize_factors.split(',') | |
| assert len(factors) == 1, "When running inference, please provide a single downsampling factor!" | |
| mixed_path_results = os.path.join(test_opts.exp_dir, 'style_mixing', | |
| 'downsampling_{}'.format(test_opts.resize_factors)) | |
| else: | |
| mixed_path_results = os.path.join(test_opts.exp_dir, 'style_mixing') | |
| os.makedirs(mixed_path_results, exist_ok=True) | |
| # update test options with options used during training | |
| ckpt = torch.load(test_opts.checkpoint_path, map_location='cpu') | |
| opts = ckpt['opts'] | |
| opts.update(vars(test_opts)) | |
| if 'learn_in_w' not in opts: | |
| opts['learn_in_w'] = False | |
| if 'output_size' not in opts: | |
| opts['output_size'] = 1024 | |
| opts = Namespace(**opts) | |
| net = pSp(opts) | |
| net.eval() | |
| net.cuda() | |
| print('Loading dataset for {}'.format(opts.dataset_type)) | |
| dataset_args = data_configs.DATASETS[opts.dataset_type] | |
| transforms_dict = dataset_args['transforms'](opts).get_transforms() | |
| dataset = InferenceDataset(root=opts.data_path, | |
| transform=transforms_dict['transform_inference'], | |
| opts=opts) | |
| dataloader = DataLoader(dataset, | |
| batch_size=opts.test_batch_size, | |
| shuffle=False, | |
| num_workers=int(opts.test_workers), | |
| drop_last=True) | |
| latent_mask = [int(l) for l in opts.latent_mask.split(",")] | |
| if opts.n_images is None: | |
| opts.n_images = len(dataset) | |
| global_i = 0 | |
| for input_batch in tqdm(dataloader): | |
| if global_i >= opts.n_images: | |
| break | |
| with torch.no_grad(): | |
| input_batch = input_batch.cuda() | |
| for image_idx, input_image in enumerate(input_batch): | |
| # generate random vectors to inject into input image | |
| vecs_to_inject = np.random.randn(opts.n_outputs_to_generate, 512).astype('float32') | |
| multi_modal_outputs = [] | |
| for vec_to_inject in vecs_to_inject: | |
| cur_vec = torch.from_numpy(vec_to_inject).unsqueeze(0).to("cuda") | |
| # get latent vector to inject into our input image | |
| _, latent_to_inject = net(cur_vec, | |
| input_code=True, | |
| return_latents=True) | |
| # get output image with injected style vector | |
| res = net(input_image.unsqueeze(0).to("cuda").float(), | |
| latent_mask=latent_mask, | |
| inject_latent=latent_to_inject, | |
| alpha=opts.mix_alpha, | |
| resize=opts.resize_outputs) | |
| multi_modal_outputs.append(res[0]) | |
| # visualize multi modal outputs | |
| input_im_path = dataset.paths[global_i] | |
| image = input_batch[image_idx] | |
| input_image = log_input_image(image, opts) | |
| resize_amount = (256, 256) if opts.resize_outputs else (opts.output_size, opts.output_size) | |
| res = np.array(input_image.resize(resize_amount)) | |
| for output in multi_modal_outputs: | |
| output = tensor2im(output) | |
| res = np.concatenate([res, np.array(output.resize(resize_amount))], axis=1) | |
| Image.fromarray(res).save(os.path.join(mixed_path_results, os.path.basename(input_im_path))) | |
| global_i += 1 | |
| if __name__ == '__main__': | |
| run() | |