File size: 17,383 Bytes
2a5b13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import argparse
import math
import random

from vqgan_clip.grad import *
from vqgan_clip.helpers import *
from vqgan_clip.inits import *
from vqgan_clip.masking import *
from vqgan_clip.optimizers import *

from urllib.request import urlopen
from tqdm import tqdm
import sys
import os

from omegaconf import OmegaConf

from taming.models import cond_transformer, vqgan

import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from torch.cuda import get_device_properties
torch.backends.cudnn.benchmark = False

from torch_optimizer import DiffGrad, AdamP, RAdam

import clip
import kornia.augmentation as K
import numpy as np
import imageio

from PIL import ImageFile, Image, PngImagePlugin, ImageChops
ImageFile.LOAD_TRUNCATED_IMAGES = True

from subprocess import Popen, PIPE
import re
from packaging import version

# Supress warnings
import warnings
warnings.filterwarnings('ignore')

# Check for GPU and reduce the default image size if low VRAM
default_image_size = 512  # >8GB VRAM
if not torch.cuda.is_available():
    default_image_size = 256  # no GPU found
elif get_device_properties(0).total_memory <= 2 ** 33:  # 2 ** 33 = 8,589,934,592 bytes = 8 GB
    default_image_size = 318  # <8GB VRAM

def parse():

    vq_parser = argparse.ArgumentParser(description='Image generation using VQGAN+CLIP')

    vq_parser.add_argument("-aug",  "--augments", nargs='+', action='append', type=str, choices=['Hf','Ji','Sh','Pe','Ro','Af','Et','Ts','Er'],
                           help="Enabled augments (latest vut method only)", default=[['Hf','Af', 'Pe', 'Ji', 'Er']], dest='augments')
    vq_parser.add_argument("-cd",   "--cuda_device", type=str, help="Cuda device to use", default="cuda:0", dest='cuda_device')
    vq_parser.add_argument("-ckpt", "--vqgan_checkpoint", type=str, help="VQGAN checkpoint", default=f'checkpoints/vqgan_imagenet_f16_16384.ckpt',
                           dest='vqgan_checkpoint')
    vq_parser.add_argument("-conf", "--vqgan_config", type=str, help="VQGAN config", default=f'checkpoints/vqgan_imagenet_f16_16384.yaml', dest='vqgan_config')
    vq_parser.add_argument("-cpe",  "--change_prompt_every", type=int, help="Prompt change frequency", default=0, dest='prompt_frequency')
    vq_parser.add_argument("-cutm", "--cut_method", type=str, help="Cut method", choices=['original','latest'],
                           default='latest', dest='cut_method')
    vq_parser.add_argument("-cutp", "--cut_power", type=float, help="Cut power", default=1., dest='cut_pow')
    vq_parser.add_argument("-cuts", "--num_cuts", type=int, help="Number of cuts", default=32, dest='cutn')
    vq_parser.add_argument("-d",    "--deterministic", action='store_true', help="Enable cudnn.deterministic?", dest='cudnn_determinism')
    vq_parser.add_argument("-i",    "--iterations", type=int, help="Number of iterations", default=500, dest='max_iterations')
    vq_parser.add_argument("-ifps", "--input_video_fps", type=float,
                           help="When creating an interpolated video, use this as the input fps to interpolate from (>0 & <ofps)", default=15,
                           dest='input_video_fps')
    vq_parser.add_argument("-ii",   "--init_image", type=str, help="Initial image", default=None, dest='init_image')
    vq_parser.add_argument("-in",   "--init_noise", type=str, help="Initial noise image (pixels or gradient)", default=None, dest='init_noise')
    vq_parser.add_argument("-ip",   "--image_prompts", type=str, help="Image prompts / target image", default=[], dest='image_prompts')
    vq_parser.add_argument("-iw",   "--init_weight", type=float, help="Initial weight", default=0., dest='init_weight')
    vq_parser.add_argument("-lr",   "--learning_rate", type=float, help="Learning rate", default=0.1, dest='step_size')
    vq_parser.add_argument("-m",    "--clip_model", type=str, help="CLIP model (e.g. ViT-B/32, ViT-B/16)", default='ViT-B/32', dest='clip_model')
    vq_parser.add_argument("-nps",  "--noise_prompt_seeds", nargs="*", type=int, help="Noise prompt seeds", default=[], dest='noise_prompt_seeds')
    vq_parser.add_argument("-npw",  "--noise_prompt_weights", nargs="*", type=float, help="Noise prompt weights", default=[], dest='noise_prompt_weights')
    vq_parser.add_argument("-o",    "--output", type=str, help="Output filename", default="output.png", dest='output')
    vq_parser.add_argument("-ofps", "--output_video_fps", type=float,
                           help="Create an interpolated video (Nvidia GPU only) with this fps (min 10. best set to 30 or 60)", default=0, dest='output_video_fps')
    vq_parser.add_argument("-opt",  "--optimiser", type=str, help="Optimiser", choices=['Adam','AdamW','Adagrad','Adamax','DiffGrad','AdamP','RAdam','RMSprop'],
                           default='Adam', dest='optimiser')
    vq_parser.add_argument("-p",    "--prompts", type=str, help="Text prompts", default=None, dest='prompts')
    vq_parser.add_argument("-s",    "--size", nargs=2, type=int, help="Image size (width height) (default: %(default)s)",
                           default=[default_image_size, default_image_size], dest='size')
    vq_parser.add_argument("-sd",   "--seed", type=int, help="Seed", default=None, dest='seed')
    vq_parser.add_argument("-se",   "--save_every", type=int, help="Save image iterations", default=50, dest='display_freq')
    vq_parser.add_argument("-vid",  "--video", action='store_true', help="Create video frames?", dest='make_video')
    vq_parser.add_argument("-vl",   "--video_length", type=float, help="Video length in seconds (not interpolated)", default=10, dest='video_length')
    vq_parser.add_argument("-vsd",  "--video_style_dir", type=str, help="Directory with video frames to style", default=None, dest='video_style_dir')
    vq_parser.add_argument("-zs",   "--zoom_start", type=int, help="Zoom start iteration", default=0, dest='zoom_start')
    vq_parser.add_argument("-zsc",  "--zoom_scale", type=float, help="Zoom scale %", default=0.99, dest='zoom_scale')
    vq_parser.add_argument("-zse",  "--zoom_save_every", type=int, help="Save zoom image iterations", default=10, dest='zoom_frequency')
    vq_parser.add_argument("-zsx",  "--zoom_shift_x", type=int, help="Zoom shift x (left/right) amount in pixels", default=0, dest='zoom_shift_x')
    vq_parser.add_argument("-zsy",  "--zoom_shift_y", type=int, help="Zoom shift y (up/down) amount in pixels", default=0, dest='zoom_shift_y')
    vq_parser.add_argument("-zvid", "--zoom_video", action='store_true', help="Create zoom video?", dest='make_zoom_video')

    args = vq_parser.parse_args()

    if not args.prompts and not args.image_prompts:
        raise Exception("You must supply a text or image prompt")

    torch.backends.cudnn.deterministic = args.cudnn_determinism

    # Split text prompts using the pipe character (weights are split later)
    if args.prompts:
        # For stories, there will be many phrases
        story_phrases = [phrase.strip() for phrase in args.prompts.split("^")]

        # Make a list of all phrases
        all_phrases = []
        for phrase in story_phrases:
            all_phrases.append(phrase.split("|"))

        # First phrase
        args.prompts = all_phrases[0]

    # Split target images using the pipe character (weights are split later)
    if args.image_prompts:
        args.image_prompts = args.image_prompts.split("|")
        args.image_prompts = [image.strip() for image in args.image_prompts]

    if args.make_video and args.make_zoom_video:
        print("Warning: Make video and make zoom video are mutually exclusive.")
        args.make_video = False

    # Make video steps directory
    if args.make_video or args.make_zoom_video:
        if not os.path.exists('steps'):
            os.mkdir('steps')

    return args

class Prompt(nn.Module):
    def __init__(self, embed, weight=1., stop=float('-inf')):
        super().__init__()
        self.register_buffer('embed', embed)
        self.register_buffer('weight', torch.as_tensor(weight))
        self.register_buffer('stop', torch.as_tensor(stop))

    def forward(self, input):
        input_normed = F.normalize(input.unsqueeze(1), dim=2)
        embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
        dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
        dists = dists * self.weight.sign()
        return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()


#NR: Split prompts and weights
def split_prompt(prompt):
    vals = prompt.rsplit(':', 2)
    vals = vals + ['', '1', '-inf'][len(vals):]
    return vals[0], float(vals[1]), float(vals[2])


def load_vqgan_model(config_path, checkpoint_path):
    global gumbel
    gumbel = False
    config = OmegaConf.load(config_path)
    if config.model.target == 'taming.models.vqgan.VQModel':
        model = vqgan.VQModel(**config.model.params)
        model.eval().requires_grad_(False)
        model.init_from_ckpt(checkpoint_path)
    elif config.model.target == 'taming.models.vqgan.GumbelVQ':
        model = vqgan.GumbelVQ(**config.model.params)
        model.eval().requires_grad_(False)
        model.init_from_ckpt(checkpoint_path)
        gumbel = True
    elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
        parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
        parent_model.eval().requires_grad_(False)
        parent_model.init_from_ckpt(checkpoint_path)
        model = parent_model.first_stage_model
    else:
        raise ValueError(f'unknown model type: {config.model.target}')
    del model.loss
    return model


# Vector quantize
def synth(z):
    if gumbel:
        z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1)
    else:
        z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
    return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)


@torch.inference_mode()
def checkin(i, losses):
    losses_str = ', '.join(f'{loss.item():g}' for loss in losses)
    tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}')
    out = synth(z)
    info = PngImagePlugin.PngInfo()
    info.add_text('comment', f'{args.prompts}')
    TF.to_pil_image(out[0].cpu()).save(args.output, pnginfo=info) 	


def ascend_txt():
    global i
    out = synth(z)
    iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
    
    result = []

    if args.init_weight:
        # result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
        result.append(F.mse_loss(z, torch.zeros_like(z_orig)) * ((1/torch.tensor(i*2 + 1))*args.init_weight) / 2)

    for prompt in pMs:
        result.append(prompt(iii))
    
    if args.make_video:    
        img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
        img = np.transpose(img, (1, 2, 0))
        imageio.imwrite('./steps/' + str(i) + '.png', np.array(img))

    return result # return loss


def train(i):
    opt.zero_grad(set_to_none=True)
    lossAll = ascend_txt()
    
    if i % args.display_freq == 0:
        checkin(i, lossAll)
       
    loss = sum(lossAll)
    loss.backward()
    opt.step()
    
    #with torch.no_grad():
    with torch.inference_mode():
        z.copy_(z.maximum(z_min).minimum(z_max))


if __name__ == '__main__':

    args = parse()

    # Do it
    device = torch.device(args.cuda_device)
    model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
    jit = True if version.parse(torch.__version__) < version.parse('1.8.0') else False
    perceptor = clip.load(args.clip_model, jit=jit)[0].eval().requires_grad_(False).to(device)
    

    cut_size = perceptor.visual.input_resolution
    f = 2**(model.decoder.num_resolutions - 1)

    # Cutout class options:
    # 'latest','original','updated' or 'updatedpooling'
    if args.cut_method == 'latest':
        make_cutouts = MakeCutouts(args, cut_size, args.cutn)
    elif args.cut_method == 'original':
        make_cutouts = MakeCutoutsOrig(args, cut_size, args.cutn)

    toksX, toksY = args.size[0] // f, args.size[1] // f
    sideX, sideY = toksX * f, toksY * f

    # Gumbel or not?
    if gumbel:
        e_dim = 256
        n_toks = model.quantize.n_embed
        z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None]
        z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None]
    else:
        e_dim = model.quantize.e_dim
        n_toks = model.quantize.n_e
        z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
        z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]


    if args.init_image:
        if 'http' in args.init_image:
          img = Image.open(urlopen(args.init_image))
        else:
          img = Image.open(args.init_image)
        pil_image = img.convert('RGB')
        pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
        pil_tensor = TF.to_tensor(pil_image)
        z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
    elif args.init_noise == 'pixels':
        img = random_noise_image(args.size[0], args.size[1])    
        pil_image = img.convert('RGB')
        pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
        pil_tensor = TF.to_tensor(pil_image)
        z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
    elif args.init_noise == 'gradient':
        img = random_gradient_image(args.size[0], args.size[1])
        pil_image = img.convert('RGB')
        pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
        pil_tensor = TF.to_tensor(pil_image)
        z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
    else:
        one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
        # z = one_hot @ model.quantize.embedding.weight
        if gumbel:
            z = one_hot @ model.quantize.embed.weight
        else:
            z = one_hot @ model.quantize.embedding.weight

        z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) 
        #z = torch.rand_like(z)*2						# NR: check

    z_orig = z.clone()
    z.requires_grad_(True)    
    pMs = []
    normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                      std=[0.26862954, 0.26130258, 0.27577711])


    # CLIP tokenize/encode   
    if args.prompts:
        for prompt in args.prompts:
            txt, weight, stop = split_prompt(prompt)
            embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
            pMs.append(Prompt(embed, weight, stop).to(device))


    for prompt in args.image_prompts:
        path, weight, stop = split_prompt(prompt)
        img = Image.open(path)
        pil_image = img.convert('RGB')
        img = resize_image(pil_image, (sideX, sideY))
        batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
        embed = perceptor.encode_image(normalize(batch)).float()
        pMs.append(Prompt(embed, weight, stop).to(device))

    for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
        gen = torch.Generator().manual_seed(seed)
        embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
        pMs.append(Prompt(embed, weight).to(device))


    # Set the optimiser
    opt, z = get_opt(args.optimiser, z, args.step_size)


    # Output for the user
    print('Using device:', device)
    print('Optimising using:', args.optimiser)

    if args.prompts:
        print('Using text prompts:', args.prompts)  
    if args.image_prompts:
        print('Using image prompts:', args.image_prompts)
    if args.init_image:
        print('Using initial image:', args.init_image)
    if args.noise_prompt_weights:
        print('Noise prompt weights:', args.noise_prompt_weights)    


    if args.seed is None:
        seed = torch.seed()
    else:
        seed = args.seed  
    torch.manual_seed(seed)
    print('Using seed:', seed)
    
    
    i = 0 # Iteration counter
    j = 0 # Zoom video frame counter    
    p = 1 # Phrase counter
    smoother = 0 # Smoother counter
    this_video_frame = 0 # for video styling

    with tqdm() as pbar:
        while i < args.max_iterations:
            # Change text prompt
            if args.prompt_frequency > 0:
                if i % args.prompt_frequency == 0 and i > 0:
                    # In case there aren't enough phrases, just loop
                    if p >= len(all_phrases):
                        p = 0
                    
                    pMs = []
                    args.prompts = all_phrases[p]

                    # Show user we're changing prompt                                
                    print(args.prompts)
                    
                    for prompt in args.prompts:
                        txt, weight, stop = split_prompt(prompt)
                        embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
                        pMs.append(Prompt(embed, weight, stop).to(device))                    
                    p += 1
            train(i)
            i += 1
            pbar.update()
    
    print("done")