Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +208 -0
- requirements.txt +23 -0
app.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from transformers import pipeline
|
6 |
+
import gc
|
7 |
+
import warnings
|
8 |
+
warnings.filterwarnings("ignore")
|
9 |
+
|
10 |
+
class OptimizedShukaASR:
|
11 |
+
def __init__(self):
|
12 |
+
self.pipe = None
|
13 |
+
self.load_model()
|
14 |
+
|
15 |
+
def load_model(self):
|
16 |
+
"""Load model with optimizations for CPU inference"""
|
17 |
+
try:
|
18 |
+
# Force CPU usage and optimize for inference
|
19 |
+
self.pipe = pipeline(
|
20 |
+
model='sarvamai/shuka_v1',
|
21 |
+
trust_remote_code=True,
|
22 |
+
device=-1, # Force CPU
|
23 |
+
torch_dtype=torch.float16, # Use half precision
|
24 |
+
model_kwargs={
|
25 |
+
"torch_dtype": torch.float16,
|
26 |
+
"low_cpu_mem_usage": True,
|
27 |
+
"use_cache": True,
|
28 |
+
}
|
29 |
+
)
|
30 |
+
|
31 |
+
# Set to eval mode and optimize
|
32 |
+
if hasattr(self.pipe.model, 'eval'):
|
33 |
+
self.pipe.model.eval()
|
34 |
+
|
35 |
+
# Compile for faster inference (PyTorch 2.0+)
|
36 |
+
try:
|
37 |
+
self.pipe.model = torch.compile(self.pipe.model, mode="reduce-overhead")
|
38 |
+
except:
|
39 |
+
pass # Skip if torch.compile not available
|
40 |
+
|
41 |
+
print("Model loaded successfully with optimizations")
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error loading model: {e}")
|
45 |
+
self.pipe = None
|
46 |
+
|
47 |
+
def preprocess_audio(self, audio_input, target_sr=16000, max_duration=30):
|
48 |
+
"""Preprocess audio with length limiting and optimization"""
|
49 |
+
try:
|
50 |
+
if isinstance(audio_input, tuple):
|
51 |
+
sr, audio_data = audio_input
|
52 |
+
audio_data = audio_data.astype(np.float32)
|
53 |
+
if len(audio_data.shape) > 1:
|
54 |
+
audio_data = audio_data.mean(axis=1) # Convert to mono
|
55 |
+
audio_data = audio_data / np.max(np.abs(audio_data)) # Normalize
|
56 |
+
else:
|
57 |
+
audio_data, sr = librosa.load(audio_input, sr=target_sr)
|
58 |
+
|
59 |
+
# Limit audio duration to reduce processing time
|
60 |
+
max_samples = int(max_duration * target_sr)
|
61 |
+
if len(audio_data) > max_samples:
|
62 |
+
audio_data = audio_data[:max_samples]
|
63 |
+
print(f"Audio truncated to {max_duration} seconds")
|
64 |
+
|
65 |
+
# Resample if needed
|
66 |
+
if sr != target_sr:
|
67 |
+
audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=target_sr)
|
68 |
+
|
69 |
+
return audio_data, target_sr
|
70 |
+
|
71 |
+
except Exception as e:
|
72 |
+
raise Exception(f"Audio preprocessing failed: {e}")
|
73 |
+
|
74 |
+
def transcribe(self, audio_input, language="auto"):
|
75 |
+
"""Transcribe audio to text"""
|
76 |
+
if self.pipe is None:
|
77 |
+
return "Model not loaded. Please check the setup."
|
78 |
+
|
79 |
+
try:
|
80 |
+
# Preprocess audio
|
81 |
+
audio, sr = self.preprocess_audio(audio_input)
|
82 |
+
|
83 |
+
# Prepare system prompt for ASR only
|
84 |
+
if language == "auto":
|
85 |
+
system_prompt = "Transcribe the following audio accurately. Only provide the transcription, nothing else."
|
86 |
+
else:
|
87 |
+
system_prompt = f"Transcribe the following audio in {language}. Only provide the transcription, nothing else."
|
88 |
+
|
89 |
+
turns = [
|
90 |
+
{'role': 'system', 'content': system_prompt},
|
91 |
+
{'role': 'user', 'content': '<|audio|>'}
|
92 |
+
]
|
93 |
+
|
94 |
+
# Run inference with memory optimization
|
95 |
+
with torch.no_grad():
|
96 |
+
result = self.pipe(
|
97 |
+
{
|
98 |
+
'audio': audio,
|
99 |
+
'turns': turns,
|
100 |
+
'sampling_rate': sr
|
101 |
+
},
|
102 |
+
max_new_tokens=256, # Reduced for ASR only
|
103 |
+
do_sample=False, # Deterministic output
|
104 |
+
temperature=0.1, # Low temperature for accuracy
|
105 |
+
pad_token_id=self.pipe.tokenizer.eos_token_id
|
106 |
+
)
|
107 |
+
|
108 |
+
# Clean up memory
|
109 |
+
if torch.cuda.is_available():
|
110 |
+
torch.cuda.empty_cache()
|
111 |
+
gc.collect()
|
112 |
+
|
113 |
+
# Extract transcription
|
114 |
+
if isinstance(result, list) and len(result) > 0:
|
115 |
+
transcription = result[0].get('generated_text', '').strip()
|
116 |
+
elif isinstance(result, dict):
|
117 |
+
transcription = result.get('generated_text', '').strip()
|
118 |
+
else:
|
119 |
+
transcription = str(result).strip()
|
120 |
+
|
121 |
+
return transcription
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
return f"Transcription failed: {str(e)}"
|
125 |
+
|
126 |
+
# Initialize the ASR system
|
127 |
+
asr_system = OptimizedShukaASR()
|
128 |
+
|
129 |
+
def transcribe_audio(audio, language):
|
130 |
+
"""Gradio interface function"""
|
131 |
+
if audio is None:
|
132 |
+
return "Please provide an audio file."
|
133 |
+
|
134 |
+
result = asr_system.transcribe(audio, language)
|
135 |
+
return result
|
136 |
+
|
137 |
+
# Language options
|
138 |
+
languages = [
|
139 |
+
("Auto-detect", "auto"),
|
140 |
+
("English", "english"),
|
141 |
+
("Hindi", "hindi"),
|
142 |
+
("Bengali", "bengali"),
|
143 |
+
("Gujarati", "gujarati"),
|
144 |
+
("Kannada", "kannada"),
|
145 |
+
("Malayalam", "malayalam"),
|
146 |
+
("Marathi", "marathi"),
|
147 |
+
("Oriya", "oriya"),
|
148 |
+
("Punjabi", "punjabi"),
|
149 |
+
("Tamil", "tamil"),
|
150 |
+
("Telugu", "telugu")
|
151 |
+
]
|
152 |
+
|
153 |
+
# Create Gradio interface
|
154 |
+
with gr.Blocks(title="Shuka v1 ASR - Multilingual Speech Recognition") as demo:
|
155 |
+
gr.Markdown("# ποΈ Shuka v1 ASR - Fast Multilingual Transcription")
|
156 |
+
gr.Markdown("Upload an audio file or record directly to get transcription in multiple Indic languages.")
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
audio_input = gr.Audio(
|
161 |
+
label="Audio Input",
|
162 |
+
type="filepath",
|
163 |
+
format="wav"
|
164 |
+
)
|
165 |
+
language_dropdown = gr.Dropdown(
|
166 |
+
choices=languages,
|
167 |
+
value="auto",
|
168 |
+
label="Language (optional)"
|
169 |
+
)
|
170 |
+
transcribe_btn = gr.Button("π Transcribe", variant="primary")
|
171 |
+
|
172 |
+
with gr.Column():
|
173 |
+
output_text = gr.Textbox(
|
174 |
+
label="Transcription",
|
175 |
+
placeholder="Transcription will appear here...",
|
176 |
+
lines=10
|
177 |
+
)
|
178 |
+
|
179 |
+
# Event handlers
|
180 |
+
transcribe_btn.click(
|
181 |
+
fn=transcribe_audio,
|
182 |
+
inputs=[audio_input, language_dropdown],
|
183 |
+
outputs=output_text
|
184 |
+
)
|
185 |
+
|
186 |
+
# Auto-transcribe on audio upload
|
187 |
+
audio_input.change(
|
188 |
+
fn=transcribe_audio,
|
189 |
+
inputs=[audio_input, language_dropdown],
|
190 |
+
outputs=output_text
|
191 |
+
)
|
192 |
+
|
193 |
+
# Examples section
|
194 |
+
gr.Markdown("## π Tips for best results:")
|
195 |
+
gr.Markdown("""
|
196 |
+
- Audio files are automatically limited to 30 seconds for faster processing
|
197 |
+
- Supported formats: WAV, MP3, M4A, WEBM
|
198 |
+
- For best accuracy, use clear audio with minimal background noise
|
199 |
+
- The model supports 11 Indic languages + English
|
200 |
+
""")
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
demo.launch(
|
204 |
+
server_name="0.0.0.0",
|
205 |
+
server_port=7860,
|
206 |
+
share=False,
|
207 |
+
show_error=True
|
208 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core ML libraries
|
2 |
+
torch==2.1.0
|
3 |
+
transformers==4.41.2
|
4 |
+
peft==0.11.1
|
5 |
+
|
6 |
+
# Audio processing
|
7 |
+
librosa==0.10.2
|
8 |
+
soundfile==0.12.1
|
9 |
+
|
10 |
+
# Gradio for web interface
|
11 |
+
gradio==4.20.0
|
12 |
+
|
13 |
+
# Utilities
|
14 |
+
numpy==1.24.3
|
15 |
+
scipy==1.11.1
|
16 |
+
torchaudio==2.1.0
|
17 |
+
|
18 |
+
# Optional optimizations
|
19 |
+
accelerate==0.28.0
|
20 |
+
bitsandbytes==0.43.0
|
21 |
+
|
22 |
+
# System utilities
|
23 |
+
psutil==5.9.5
|