import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import joblib # Mock dataset data = { 'age': [25, 32, 47, 51, 29, 45, 35, 33, 29, 24], 'education_level': [16, 18, 20, 21, 16, 18, 17, 16, 16, 15], 'experience': [1, 6, 20, 25, 3, 15, 8, 4, 2, 1], 'salary': [30000, 50000, 120000, 140000, 35000, 110000, 60000, 52000, 40000, 32000] } df = pd.DataFrame(data) # Split dataset X = df[['age', 'education_level', 'experience']] y = df['salary'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train model model = LinearRegression() model.fit(X_train, y_train) # Evaluate model y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print(f"Model MSE: {mse}") # Save model joblib.dump(model, 'salary_model.joblib') import gradio as gr import joblib # Load the trained model model = joblib.load('salary_model.joblib') # Define prediction function def predict_salary(age, education_level, experience): input_data = [[age, education_level, experience]] prediction = model.predict(input_data) return f"Predicted Salary: ${prediction[0]:.2f}" # Create Gradio interface demo = gr.Interface( fn=predict_salary, inputs=[ gr.Number(label="Age"), gr.Number(label="Education Level (years)"), gr.Number(label="Experience (years)") ], outputs="text", title="Salary Prediction Model", description="Predict salary based on age, education level, and years of experience." ) # Launch the Gradio app demo.launch()