Spaces:
Sleeping
Sleeping
Create train1.py
Browse files
train1.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, gc, os, numpy as np, evaluate, json
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoTokenizer,
|
| 5 |
+
AutoModelForQuestionAnswering,
|
| 6 |
+
TrainingArguments,
|
| 7 |
+
Trainer,
|
| 8 |
+
default_data_collator
|
| 9 |
+
)
|
| 10 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
| 11 |
+
from huggingface_hub import login
|
| 12 |
+
import sys
|
| 13 |
+
|
| 14 |
+
def main():
|
| 15 |
+
# Get model name from environment
|
| 16 |
+
model_name = os.environ.get('MODEL_NAME', 'roberta-cuad-qa')
|
| 17 |
+
|
| 18 |
+
# Login to HF Hub
|
| 19 |
+
hf_token = os.environ.get('roberta_token')
|
| 20 |
+
if hf_token:
|
| 21 |
+
login(token=hf_token)
|
| 22 |
+
print("β
Logged into Hugging Face Hub")
|
| 23 |
+
else:
|
| 24 |
+
print("β οΈ No HF_TOKEN found - model won't be pushed to Hub")
|
| 25 |
+
|
| 26 |
+
# Setup
|
| 27 |
+
torch.cuda.empty_cache()
|
| 28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
print(f"π§ Using device: {device}")
|
| 30 |
+
if torch.cuda.is_available():
|
| 31 |
+
print(f"π― GPU: {torch.cuda.get_device_name()}")
|
| 32 |
+
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
|
| 33 |
+
|
| 34 |
+
# Load and prepare data - REDUCED SIZE FOR FASTER TRAINING
|
| 35 |
+
print("π Loading CUAD dataset...")
|
| 36 |
+
raw = load_dataset("theatticusproject/cuad-qa", split="train", trust_remote_code=True)
|
| 37 |
+
|
| 38 |
+
# Use 5000 samples for good model quality - expect ~1 hour training
|
| 39 |
+
N = 5000
|
| 40 |
+
raw = raw.shuffle(seed=42).select(range(min(N, len(raw))))
|
| 41 |
+
ds = raw.train_test_split(test_size=0.1, seed=42)
|
| 42 |
+
train_ds, val_ds = ds["train"], ds["test"]
|
| 43 |
+
print(f"β
Data loaded - Train: {len(train_ds)}, Val: {len(val_ds)}")
|
| 44 |
+
|
| 45 |
+
# Store original validation data for metrics
|
| 46 |
+
print("π Preparing metrics data...")
|
| 47 |
+
original_val_data = []
|
| 48 |
+
val_sample_mapping = [] # Track which tokenized sample maps to which original
|
| 49 |
+
|
| 50 |
+
for i, ex in enumerate(val_ds):
|
| 51 |
+
original_val_data.append(ex["answers"])
|
| 52 |
+
|
| 53 |
+
# Load model and tokenizer
|
| 54 |
+
print("π€ Loading RoBERTa model...")
|
| 55 |
+
base_model = "roberta-base"
|
| 56 |
+
tok = AutoTokenizer.from_pretrained(base_model, use_fast=True)
|
| 57 |
+
model = AutoModelForQuestionAnswering.from_pretrained(base_model)
|
| 58 |
+
|
| 59 |
+
# Add LoRA
|
| 60 |
+
print("π§ Adding LoRA adapters...")
|
| 61 |
+
lora_cfg = LoraConfig(
|
| 62 |
+
task_type=TaskType.QUESTION_ANS,
|
| 63 |
+
target_modules=["query", "value"],
|
| 64 |
+
r=16,
|
| 65 |
+
lora_alpha=32,
|
| 66 |
+
lora_dropout=0.05,
|
| 67 |
+
)
|
| 68 |
+
model = get_peft_model(model, lora_cfg)
|
| 69 |
+
model.print_trainable_parameters()
|
| 70 |
+
model.to(device)
|
| 71 |
+
|
| 72 |
+
# Tokenization function - AGGRESSIVE OPTIMIZATION TO PREVENT EXPANSION
|
| 73 |
+
max_len, doc_stride = 512, 400 # Much larger stride to minimize chunks per document
|
| 74 |
+
|
| 75 |
+
def preprocess(examples):
|
| 76 |
+
tok_batch = tok(
|
| 77 |
+
examples["question"],
|
| 78 |
+
examples["context"],
|
| 79 |
+
truncation="only_second",
|
| 80 |
+
max_length=max_len,
|
| 81 |
+
stride=doc_stride,
|
| 82 |
+
return_overflowing_tokens=True,
|
| 83 |
+
return_offsets_mapping=True,
|
| 84 |
+
padding="max_length",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
sample_map = tok_batch.pop("overflow_to_sample_mapping")
|
| 88 |
+
offset_map = tok_batch.pop("offset_mapping")
|
| 89 |
+
|
| 90 |
+
start_pos, end_pos = [], []
|
| 91 |
+
for i, offsets in enumerate(offset_map):
|
| 92 |
+
cls_idx = tok_batch["input_ids"][i].index(tok.cls_token_id)
|
| 93 |
+
sample_idx = sample_map[i]
|
| 94 |
+
answer = examples["answers"][sample_idx]
|
| 95 |
+
|
| 96 |
+
if len(answer["answer_start"]) == 0:
|
| 97 |
+
start_pos.append(cls_idx)
|
| 98 |
+
end_pos.append(cls_idx)
|
| 99 |
+
continue
|
| 100 |
+
|
| 101 |
+
s_char = answer["answer_start"][0]
|
| 102 |
+
e_char = s_char + len(answer["text"][0])
|
| 103 |
+
seq_ids = tok_batch.sequence_ids(i)
|
| 104 |
+
c0, c1 = seq_ids.index(1), len(seq_ids) - 1 - seq_ids[::-1].index(1)
|
| 105 |
+
|
| 106 |
+
if not (offsets[c0][0] <= s_char <= offsets[c1][1]):
|
| 107 |
+
start_pos.append(cls_idx)
|
| 108 |
+
end_pos.append(cls_idx)
|
| 109 |
+
continue
|
| 110 |
+
|
| 111 |
+
st = c0
|
| 112 |
+
while st <= c1 and offsets[st][0] <= s_char:
|
| 113 |
+
st += 1
|
| 114 |
+
|
| 115 |
+
en = c1
|
| 116 |
+
while en >= c0 and offsets[en][1] >= e_char:
|
| 117 |
+
en -= 1
|
| 118 |
+
|
| 119 |
+
# Fixed position calculation with bounds checking
|
| 120 |
+
start_pos.append(max(c0, min(st - 1, c1)))
|
| 121 |
+
end_pos.append(max(c0, min(en + 1, c1)))
|
| 122 |
+
|
| 123 |
+
tok_batch["start_positions"] = start_pos
|
| 124 |
+
tok_batch["end_positions"] = end_pos
|
| 125 |
+
|
| 126 |
+
# Store sample mapping for metrics calculation
|
| 127 |
+
tok_batch["sample_mapping"] = sample_map
|
| 128 |
+
return tok_batch
|
| 129 |
+
|
| 130 |
+
# Tokenize datasets
|
| 131 |
+
print("π Tokenizing datasets...")
|
| 132 |
+
train_tok = train_ds.map(
|
| 133 |
+
preprocess,
|
| 134 |
+
batched=True,
|
| 135 |
+
batch_size=50, # Smaller batch size for preprocessing
|
| 136 |
+
remove_columns=train_ds.column_names,
|
| 137 |
+
desc="Tokenizing train"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
val_tok = val_ds.map(
|
| 141 |
+
preprocess,
|
| 142 |
+
batched=True,
|
| 143 |
+
batch_size=50,
|
| 144 |
+
remove_columns=val_ds.column_names,
|
| 145 |
+
desc="Tokenizing validation"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# DEBUG: Print actual dataset sizes after tokenization
|
| 149 |
+
print(f"π DEBUG INFO:")
|
| 150 |
+
print(f" Original samples: {N}")
|
| 151 |
+
print(f" After tokenization - Train: {len(train_tok)}, Val: {len(val_tok)}")
|
| 152 |
+
print(f" Expansion factor: {len(train_tok)/len(train_ds):.1f}x")
|
| 153 |
+
|
| 154 |
+
# SAFETY CHECK: If expansion is too high, reduce data size automatically
|
| 155 |
+
expansion_factor = len(train_tok) / len(train_ds)
|
| 156 |
+
if expansion_factor > 12: # Slightly more permissive for 4K samples
|
| 157 |
+
print(f"β οΈ HIGH EXPANSION DETECTED ({expansion_factor:.1f}x)!")
|
| 158 |
+
print("π§ Auto-reducing dataset size to prevent excessively slow training...")
|
| 159 |
+
|
| 160 |
+
# Allow up to 20k samples for 1 hour training
|
| 161 |
+
target_size = min(20000, len(train_tok)) # Max 20k samples
|
| 162 |
+
train_indices = list(range(0, len(train_tok), max(1, len(train_tok) // target_size)))[:target_size]
|
| 163 |
+
val_indices = list(range(0, len(val_tok), max(1, len(val_tok) // (target_size // 10))))[:target_size // 10]
|
| 164 |
+
|
| 165 |
+
train_tok = train_tok.select(train_indices)
|
| 166 |
+
val_tok = val_tok.select(val_indices)
|
| 167 |
+
|
| 168 |
+
print(f"β
Reduced to - Train: {len(train_tok)}, Val: {len(val_tok)}")
|
| 169 |
+
print(f"π This should complete in ~45-75 minutes")
|
| 170 |
+
|
| 171 |
+
# Clean up memory
|
| 172 |
+
del raw, ds, train_ds, val_ds
|
| 173 |
+
gc.collect()
|
| 174 |
+
torch.cuda.empty_cache()
|
| 175 |
+
|
| 176 |
+
# Metrics setup
|
| 177 |
+
metric = evaluate.load("squad")
|
| 178 |
+
|
| 179 |
+
def postprocess(preds, dataset):
|
| 180 |
+
starts, ends = preds
|
| 181 |
+
answers = []
|
| 182 |
+
for i in range(len(starts)):
|
| 183 |
+
a, b = int(np.argmax(starts[i])), int(np.argmax(ends[i]))
|
| 184 |
+
if a > b:
|
| 185 |
+
a, b = b, a
|
| 186 |
+
text = tok.decode(dataset[i]["input_ids"][a:b+1], skip_special_tokens=True)
|
| 187 |
+
answers.append(text.strip())
|
| 188 |
+
return answers
|
| 189 |
+
|
| 190 |
+
def compute_metrics(eval_pred):
|
| 191 |
+
try:
|
| 192 |
+
preds, _ = eval_pred
|
| 193 |
+
starts, ends = preds
|
| 194 |
+
|
| 195 |
+
# Group predictions by original sample (handle multiple chunks per sample)
|
| 196 |
+
sample_predictions = {}
|
| 197 |
+
for i in range(len(starts)):
|
| 198 |
+
# Get which original sample this tokenized example came from
|
| 199 |
+
if hasattr(val_tok[i], 'sample_mapping') and 'sample_mapping' in val_tok[i]:
|
| 200 |
+
orig_idx = val_tok[i]['sample_mapping']
|
| 201 |
+
else:
|
| 202 |
+
# Fallback: assume 1:1 mapping (may be inaccurate with chunking)
|
| 203 |
+
orig_idx = min(i, len(original_val_data) - 1)
|
| 204 |
+
|
| 205 |
+
# Get best answer span for this chunk
|
| 206 |
+
start_idx = int(np.argmax(starts[i]))
|
| 207 |
+
end_idx = int(np.argmax(ends[i]))
|
| 208 |
+
if start_idx > end_idx:
|
| 209 |
+
start_idx, end_idx = end_idx, start_idx
|
| 210 |
+
|
| 211 |
+
# Extract answer text
|
| 212 |
+
answer_text = tok.decode(
|
| 213 |
+
val_tok[i]["input_ids"][start_idx:end_idx+1],
|
| 214 |
+
skip_special_tokens=True
|
| 215 |
+
).strip()
|
| 216 |
+
|
| 217 |
+
# Store best prediction for this original sample
|
| 218 |
+
confidence = float(starts[i][start_idx]) + float(ends[i][end_idx])
|
| 219 |
+
if orig_idx not in sample_predictions or confidence > sample_predictions[orig_idx][1]:
|
| 220 |
+
sample_predictions[orig_idx] = (answer_text, confidence)
|
| 221 |
+
|
| 222 |
+
# Format for SQuAD metric
|
| 223 |
+
predictions = []
|
| 224 |
+
references = []
|
| 225 |
+
for orig_idx in range(len(original_val_data)):
|
| 226 |
+
pred_text = sample_predictions.get(orig_idx, ("", 0))[0]
|
| 227 |
+
predictions.append({
|
| 228 |
+
"id": str(orig_idx),
|
| 229 |
+
"prediction_text": pred_text
|
| 230 |
+
})
|
| 231 |
+
references.append({
|
| 232 |
+
"id": str(orig_idx),
|
| 233 |
+
"answers": original_val_data[orig_idx]
|
| 234 |
+
})
|
| 235 |
+
|
| 236 |
+
result = metric.compute(predictions=predictions, references=references)
|
| 237 |
+
|
| 238 |
+
# Add some debugging info
|
| 239 |
+
print(f"π Evaluation: EM={result['exact_match']:.3f}, F1={result['f1']:.3f}")
|
| 240 |
+
return result
|
| 241 |
+
|
| 242 |
+
except Exception as e:
|
| 243 |
+
print(f"β οΈ Metrics computation failed: {e}")
|
| 244 |
+
print(f" Pred shape: {np.array(preds).shape if preds else 'None'}")
|
| 245 |
+
print(f" Val dataset size: {len(val_tok)}")
|
| 246 |
+
print(f" Original val size: {len(original_val_data)}")
|
| 247 |
+
return {"exact_match": 0.0, "f1": 0.0}
|
| 248 |
+
|
| 249 |
+
# OPTIMIZED Training arguments
|
| 250 |
+
output_dir = "./model_output"
|
| 251 |
+
args = TrainingArguments(
|
| 252 |
+
output_dir=output_dir,
|
| 253 |
+
per_device_train_batch_size=8, # INCREASED from 2
|
| 254 |
+
per_device_eval_batch_size=8, # INCREASED from 4
|
| 255 |
+
gradient_accumulation_steps=2, # REDUCED from 8
|
| 256 |
+
num_train_epochs=3, # Back to 3 epochs for better training
|
| 257 |
+
learning_rate=5e-4,
|
| 258 |
+
lr_scheduler_type="cosine",
|
| 259 |
+
warmup_ratio=0.1,
|
| 260 |
+
bf16=True, # CHANGED from fp16 (better for newer GPUs)
|
| 261 |
+
eval_strategy="steps",
|
| 262 |
+
eval_steps=100, # REDUCED from 250
|
| 263 |
+
save_steps=200, # REDUCED from 500
|
| 264 |
+
save_total_limit=2,
|
| 265 |
+
logging_steps=25, # REDUCED from 50
|
| 266 |
+
weight_decay=0.01,
|
| 267 |
+
remove_unused_columns=True,
|
| 268 |
+
report_to=None,
|
| 269 |
+
push_to_hub=False,
|
| 270 |
+
dataloader_pin_memory=True, # CHANGED to True for faster data loading
|
| 271 |
+
dataloader_num_workers=4, # ADDED for parallel data loading
|
| 272 |
+
gradient_checkpointing=False, # DISABLED to trade memory for speed
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Create trainer
|
| 276 |
+
trainer = Trainer(
|
| 277 |
+
model=model,
|
| 278 |
+
args=args,
|
| 279 |
+
train_dataset=train_tok,
|
| 280 |
+
eval_dataset=val_tok,
|
| 281 |
+
tokenizer=tok,
|
| 282 |
+
data_collator=default_data_collator,
|
| 283 |
+
compute_metrics=compute_metrics,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
print(f"π Starting training...")
|
| 287 |
+
print(f"π Total training samples: {len(train_tok)}")
|
| 288 |
+
print(f"π Total validation samples: {len(val_tok)}")
|
| 289 |
+
print(f"β‘ Effective batch size: {args.per_device_train_batch_size * args.gradient_accumulation_steps}")
|
| 290 |
+
|
| 291 |
+
if torch.cuda.is_available():
|
| 292 |
+
print(f"πΎ GPU memory before training: {torch.cuda.memory_allocated()/1024**3:.2f} GB")
|
| 293 |
+
|
| 294 |
+
# Training loop with error handling
|
| 295 |
+
try:
|
| 296 |
+
trainer.train()
|
| 297 |
+
print("β
Training completed successfully!")
|
| 298 |
+
except RuntimeError as e:
|
| 299 |
+
if "CUDA out of memory" in str(e):
|
| 300 |
+
print("β οΈ GPU OOM - reducing batch size and retrying...")
|
| 301 |
+
torch.cuda.empty_cache()
|
| 302 |
+
gc.collect()
|
| 303 |
+
|
| 304 |
+
# Reduce batch size
|
| 305 |
+
args.per_device_train_batch_size = 4
|
| 306 |
+
args.gradient_accumulation_steps = 4
|
| 307 |
+
trainer = Trainer(
|
| 308 |
+
model=model,
|
| 309 |
+
args=args,
|
| 310 |
+
train_dataset=train_tok,
|
| 311 |
+
eval_dataset=val_tok,
|
| 312 |
+
tokenizer=tok,
|
| 313 |
+
data_collator=default_data_collator,
|
| 314 |
+
compute_metrics=compute_metrics,
|
| 315 |
+
)
|
| 316 |
+
trainer.train()
|
| 317 |
+
print("β
Training completed with reduced batch size!")
|
| 318 |
+
else:
|
| 319 |
+
raise e
|
| 320 |
+
|
| 321 |
+
# Save model locally first
|
| 322 |
+
print("πΎ Saving model locally...")
|
| 323 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 324 |
+
trainer.model.save_pretrained(output_dir)
|
| 325 |
+
tok.save_pretrained(output_dir)
|
| 326 |
+
|
| 327 |
+
# Save training info
|
| 328 |
+
training_info = {
|
| 329 |
+
"model_name": model_name,
|
| 330 |
+
"base_model": base_model,
|
| 331 |
+
"dataset": "theatticusproject/cuad-qa",
|
| 332 |
+
"original_samples": N,
|
| 333 |
+
"training_samples_after_tokenization": len(train_tok),
|
| 334 |
+
"validation_samples_after_tokenization": len(val_tok),
|
| 335 |
+
"lora_config": {
|
| 336 |
+
"r": lora_cfg.r,
|
| 337 |
+
"lora_alpha": lora_cfg.lora_alpha,
|
| 338 |
+
"target_modules": lora_cfg.target_modules,
|
| 339 |
+
"lora_dropout": lora_cfg.lora_dropout,
|
| 340 |
+
},
|
| 341 |
+
"training_args": {
|
| 342 |
+
"batch_size": args.per_device_train_batch_size,
|
| 343 |
+
"gradient_accumulation_steps": args.gradient_accumulation_steps,
|
| 344 |
+
"effective_batch_size": args.per_device_train_batch_size * args.gradient_accumulation_steps,
|
| 345 |
+
"epochs": args.num_train_epochs,
|
| 346 |
+
"learning_rate": args.learning_rate,
|
| 347 |
+
}
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
with open(os.path.join(output_dir, "training_info.json"), "w") as f:
|
| 351 |
+
json.dump(training_info, f, indent=2)
|
| 352 |
+
|
| 353 |
+
# Push to Hub if token available
|
| 354 |
+
if hf_token:
|
| 355 |
+
try:
|
| 356 |
+
print(f"β¬οΈ Pushing model to Hub: {model_name}")
|
| 357 |
+
trainer.model.push_to_hub(model_name, private=False)
|
| 358 |
+
tok.push_to_hub(model_name, private=False)
|
| 359 |
+
|
| 360 |
+
# Also push training info
|
| 361 |
+
from huggingface_hub import upload_file
|
| 362 |
+
upload_file(
|
| 363 |
+
path_or_fileobj=os.path.join(output_dir, "training_info.json"),
|
| 364 |
+
path_in_repo="training_info.json",
|
| 365 |
+
repo_id=model_name,
|
| 366 |
+
repo_type="model"
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
print(f"π Model successfully saved to: https://huggingface.co/{model_name}")
|
| 370 |
+
except Exception as e:
|
| 371 |
+
print(f"β Failed to push to Hub: {e}")
|
| 372 |
+
print("πΎ Model saved locally in ./model_output/")
|
| 373 |
+
else:
|
| 374 |
+
print("πΎ Model saved locally in ./model_output/ (no HF token for Hub upload)")
|
| 375 |
+
|
| 376 |
+
print("π Training pipeline completed!")
|
| 377 |
+
|
| 378 |
+
if __name__ == "__main__":
|
| 379 |
+
main()
|