Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
|
|
|
17 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
pipe = pipe.to(device)
|
19 |
|
|
|
|
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
@@ -36,7 +35,7 @@ def infer(
|
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
@@ -52,9 +51,9 @@ def infer(
|
|
52 |
|
53 |
|
54 |
examples = [
|
55 |
-
"
|
56 |
-
"An
|
57 |
-
"A delicious
|
58 |
]
|
59 |
|
60 |
css = """
|
@@ -66,7 +65,7 @@ css = """
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
@@ -105,7 +104,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=1024,
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
@@ -113,7 +112,7 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=1024,
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
@@ -122,7 +121,7 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
@@ -130,10 +129,11 @@ with gr.Blocks(css=css) as demo:
|
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
from diffusers import DiffusionPipeline, LoRA
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Replace with the base model you want to use
|
9 |
+
lora_path = "lora.safetensors" # Path to your LoRA model
|
10 |
|
11 |
+
# Set appropriate torch dtype
|
12 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
|
|
13 |
|
14 |
+
# Load base pipeline
|
15 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
16 |
pipe = pipe.to(device)
|
17 |
|
18 |
+
# Load and apply LoRA
|
19 |
+
pipe.load_lora_weights(lora_path)
|
20 |
+
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1024
|
23 |
|
|
|
|
|
24 |
def infer(
|
25 |
prompt,
|
26 |
negative_prompt,
|
|
|
35 |
if randomize_seed:
|
36 |
seed = random.randint(0, MAX_SEED)
|
37 |
|
38 |
+
generator = torch.Generator(device).manual_seed(seed)
|
39 |
|
40 |
image = pipe(
|
41 |
prompt=prompt,
|
|
|
51 |
|
52 |
|
53 |
examples = [
|
54 |
+
"Emoji of a smiling face with sunglasses, colorful background, 8k",
|
55 |
+
"An emoji riding a green horse",
|
56 |
+
"A delicious emoji-themed cheesecake",
|
57 |
]
|
58 |
|
59 |
css = """
|
|
|
65 |
|
66 |
with gr.Blocks(css=css) as demo:
|
67 |
with gr.Column(elem_id="col-container"):
|
68 |
+
gr.Markdown(" # Text-to-Image Gradio Template with LoRA")
|
69 |
|
70 |
with gr.Row():
|
71 |
prompt = gr.Text(
|
|
|
104 |
minimum=256,
|
105 |
maximum=MAX_IMAGE_SIZE,
|
106 |
step=32,
|
107 |
+
value=1024,
|
108 |
)
|
109 |
|
110 |
height = gr.Slider(
|
|
|
112 |
minimum=256,
|
113 |
maximum=MAX_IMAGE_SIZE,
|
114 |
step=32,
|
115 |
+
value=1024,
|
116 |
)
|
117 |
|
118 |
with gr.Row():
|
|
|
121 |
minimum=0.0,
|
122 |
maximum=10.0,
|
123 |
step=0.1,
|
124 |
+
value=7.5,
|
125 |
)
|
126 |
|
127 |
num_inference_steps = gr.Slider(
|
|
|
129 |
minimum=1,
|
130 |
maximum=50,
|
131 |
step=1,
|
132 |
+
value=25,
|
133 |
)
|
134 |
|
135 |
gr.Examples(examples=examples, inputs=[prompt])
|
136 |
+
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|