Jordi Catafal
fixing api problem
0610fdd
raw
history blame
5.28 kB
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import List
import torch
import uvicorn
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
from utils.helpers import load_models, get_embeddings, cleanup_memory
app = FastAPI(
title="Multilingual & Legal Embedding API",
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
version="3.0.0"
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model cache - loaded on demand
models_cache = {}
def ensure_models_loaded():
"""Load models on first request if not already loaded"""
global models_cache
if not models_cache:
try:
print("Loading models on demand...")
models_cache = load_models()
print("All models loaded successfully!")
except Exception as e:
print(f"Failed to load models: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")
@app.get("/")
async def root():
return {
"message": "Multilingual & Legal Embedding API",
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
"status": "running",
"docs": "/docs",
"total_models": 5
}
@app.post("/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
"""Generate embeddings for input texts"""
try:
# Load models on first request
ensure_models_loaded()
if not request.texts:
raise HTTPException(status_code=400, detail="No texts provided")
if len(request.texts) > 50: # Rate limiting
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
embeddings = get_embeddings(
request.texts,
request.model,
models_cache,
request.normalize,
request.max_length
)
# Cleanup memory after large batches
if len(request.texts) > 20:
cleanup_memory()
return EmbeddingResponse(
embeddings=embeddings,
model_used=request.model,
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/models", response_model=List[ModelInfo])
async def list_models():
"""List available models and their specifications"""
return [
ModelInfo(
model_id="jina",
name="jinaai/jina-embeddings-v2-base-es",
dimensions=768,
max_sequence_length=8192,
languages=["Spanish", "English"],
model_type="bilingual",
description="Bilingual Spanish-English embeddings with long context support"
),
ModelInfo(
model_id="robertalex",
name="PlanTL-GOB-ES/RoBERTalex",
dimensions=768,
max_sequence_length=512,
languages=["Spanish"],
model_type="legal domain",
description="Spanish legal domain specialized embeddings"
),
ModelInfo(
model_id="jina-v3",
name="jinaai/jina-embeddings-v3",
dimensions=1024,
max_sequence_length=8192,
languages=["Multilingual"],
model_type="multilingual",
description="Latest Jina v3 with superior multilingual performance"
),
ModelInfo(
model_id="legal-bert",
name="nlpaueb/legal-bert-base-uncased",
dimensions=768,
max_sequence_length=512,
languages=["English"],
model_type="legal domain",
description="English legal domain BERT model"
),
ModelInfo(
model_id="roberta-ca",
name="projecte-aina/roberta-large-ca-v2",
dimensions=1024,
max_sequence_length=512,
languages=["Catalan"],
model_type="general",
description="Catalan RoBERTa-large model trained on large corpus"
)
]
@app.get("/health")
async def health_check():
"""Health check endpoint"""
models_loaded = len(models_cache) == 5
return {
"status": "healthy" if models_loaded else "ready",
"models_loaded": models_loaded,
"available_models": list(models_cache.keys()),
"expected_models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
"models_count": len(models_cache),
"note": "Models load on first embedding request" if not models_loaded else "All models ready"
}
if __name__ == "__main__":
# Set multi-threading for CPU
torch.set_num_threads(8)
torch.set_num_interop_threads(1)
uvicorn.run(app, host="0.0.0.0", port=7860)