|
asr_datsets = {'LibriSpeech-Test-Clean': 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.', |
|
'LibriSpeech-Test-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.', |
|
'Common-Voice-15-En-Test': 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.', |
|
'Peoples-Speech-Test' : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.', |
|
'GigaSpeech-Test' : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.', |
|
'Earnings21-Test' : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.', |
|
'Earnings22-Test' : 'Similar to Earnings21, but covering earnings calls from 2022.', |
|
'Tedlium3-Test' : 'A test set derived from TED talks, covering diverse speakers and topics.', |
|
'Tedlium3-Long-form-Test': 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.', |
|
} |
|
|
|
singlish_asr_datasets = { |
|
'IMDA-Part1-ASR-Test' : 'Speech recognition test data from the IMDA NSC project, Part 1.', |
|
'IMDA-Part2-ASR-Test' : 'Speech recognition test data from the IMDA NSC project, Part 2.', |
|
'IMDA-Part3-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 3.', |
|
'IMDA-Part4-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 4.', |
|
'IMDA-Part5-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 5.', |
|
'IMDA-Part6-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 6.' |
|
} |
|
|
|
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'Chinese College English Listening Test, with multiple-choice questions.', |
|
'DREAM-TTS-MCQ-Test': 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.', |
|
'SLUE-P2-SQA5-Test': 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.', |
|
'Public-SG-Speech-QA-Test': 'Public dataset for speech-based question answering, gathered from Singapore.', |
|
'Spoken-Squad-Test': 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.' |
|
} |
|
|
|
si_datasets = {'OpenHermes-Audio-Test': 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.', |
|
'ALPACA-Audio-Test': 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.' |
|
} |
|
|
|
ac_datasets = { |
|
'WavCaps-Test': 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.', |
|
'AudioCaps-Test': 'AudioCaps dataset, used for generating captions from general audio events.' |
|
} |
|
|
|
asqa_datasets = { |
|
'Clotho-AQA-Test': 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.', |
|
'WavCaps-QA-Test': 'Question-answering test dataset derived from WavCaps, focusing on audio content.', |
|
'AudioCaps-QA-Test': 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.' |
|
} |
|
|
|
er_datasets = { |
|
'IEMOCAP-Emotion-Test': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.', |
|
'MELD-Sentiment-Test': 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.', |
|
'MELD-Emotion-Test': 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.' |
|
} |
|
|
|
ar_datsets = { |
|
'VoxCeleb-Accent-Test': 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.' |
|
} |
|
|
|
gr_datasets = { |
|
'VoxCeleb-Gender-Test': 'Test dataset for gender classification, also derived from VoxCeleb.', |
|
'IEMOCAP-Gender-Test': 'Gender classification based on the IEMOCAP dataset.' |
|
} |
|
|
|
spt_datasets = { |
|
'Covost2-EN-ID-test': 'Covost 2 dataset for speech translation from English to Indonesian.', |
|
'Covost2-EN-ZH-test': 'Covost 2 dataset for speech translation from English to Chinese.', |
|
'Covost2-EN-TA-test': 'Covost 2 dataset for speech translation from English to Tamil.', |
|
'Covost2-ID-EN-test': 'Covost 2 dataset for speech translation from Indonesian to English.', |
|
'Covost2-ZH-EN-test': 'Covost 2 dataset for speech translation from Chinese to English.', |
|
'Covost2-TA-EN-test': 'Covost 2 dataset for speech translation from Tamil to English.' |
|
} |
|
|
|
cnasr_datasets = { |
|
'Aishell-ASR-ZH-Test': 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.' |
|
} |
|
|
|
MUSIC_MCQ_DATASETS = { |
|
'MuChoMusic-Test': 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.' |
|
} |
|
|
|
metrics = { |
|
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)', |
|
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)', |
|
'llama3_70b_judge': 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)', |
|
'meteor': 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)', |
|
'bleu': 'BLEU (Bilingual Evaluation Understudy), another text generation evaluation metric commonly used in machine translation. (Sensitive to output length)', |
|
} |
|
|
|
metrics_info = { |
|
'wer': 'Word Error Rate (WER) - The Lower, the better.', |
|
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.', |
|
'llama3_70b_judge': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.', |
|
'meteor': 'METEOR Score. The higher, the better.', |
|
'bleu': 'BLEU Score. The higher, the better.', |
|
} |
|
|
|
|
|
dataname_column_rename_in_table = { |
|
'librispeech_test_clean' : 'LibriSpeech-Clean', |
|
'librispeech_test_other' : 'LibriSpeech-Other', |
|
'common_lvoice_15_en_test' : 'CommonVoice-15-EN', |
|
'peoples_speech_test' : 'Peoples-Speech', |
|
'gigaspeech_test' : 'GigaSpeech-1', |
|
'earnings21_test' : 'Earnings-21', |
|
'earnings22_test' : 'Earnings-22', |
|
'tedlium3_test' : 'TED-LIUM-3', |
|
'tedlium3_long_form_test' : 'TED-LIUM-3-Long', |
|
'aishell_asr_zh_test' : 'Aishell-ASR-ZH', |
|
'covost2_en_id_test' : 'Covost2-EN-ID', |
|
'covost2_en_zh_test' : 'Covost2-EN-ZH', |
|
'covost2_en_ta_test' : 'Covost2-EN-TA', |
|
'covost2_id_en_test' : 'Covost2-ID-EN', |
|
'covost2_zh_en_test' : 'Covost2-ZH-EN', |
|
'covost2_ta_en_test' : 'Covost2-TA-EN', |
|
'cn_college_listen_mcq_test': 'CN-College-Listen-MCQ', |
|
'dream_tts_mcq_test' : 'DREAM-TTS-MCQ', |
|
'slue_p2_sqa5_test' : 'SLUE-P2-SQA5', |
|
'public_sg_speech_qa_test' : 'Public-SG-Speech-QA', |
|
'spoken_squad_test' : 'Spoken-SQuAD', |
|
'openhermes_audio_test' : 'OpenHermes-Audio', |
|
'alpaca_audio_test' : 'ALPACA-Audio', |
|
'wavcaps_test' : 'WavCaps', |
|
'audiocaps_test' : 'AudioCaps', |
|
'clotho_aqa_test' : 'Clotho-AQA', |
|
'wavcaps_qa_test' : 'WavCaps-QA', |
|
'audiocaps_qa_test' : 'AudioCaps-QA', |
|
'voxceleb_accent_test' : 'VoxCeleb-Accent', |
|
'voxceleb_gender_test' : 'VoxCeleb-Gender', |
|
'iemocap_gender_test' : 'IEMOCAP-Gender', |
|
'iemocap_emotion_test' : 'IEMOCAP-Emotion', |
|
'meld_sentiment_test' : 'MELD-Sentiment', |
|
'meld_emotion_test' : 'MELD-Emotion', |
|
'imda_part1_asr_test' : 'IMDA-Part1-ASR', |
|
'imda_part2_asr_test' : 'IMDA-Part2-ASR', |
|
'imda_part3_30s_asr_test' : 'IMDA-Part3-30s-ASR', |
|
'imda_part4_30s_asr_test' : 'IMDA-Part4-30s-ASR', |
|
'imda_part5_30s_asr_test' : 'IMDA-Part5-30s-ASR', |
|
'imda_part6_30s_asr_test' : 'IMDA-Part6-30s-ASR', |
|
|
|
'muchomusic_test' : 'MuChoMusic' |
|
|
|
|
|
} |