|
import streamlit as st |
|
from app.draw_diagram import * |
|
from app.content import * |
|
|
|
def dataset_contents(dataset, metrics): |
|
|
|
custom_css = """ |
|
<style> |
|
.my-dataset-info { |
|
# background-color: #F9EBEA; |
|
# padding: 10px; |
|
color: #626567; |
|
font-style: italic; |
|
font-size: 8px; |
|
height: auto; |
|
} |
|
</style> |
|
""" |
|
st.markdown(custom_css, unsafe_allow_html=True) |
|
st.markdown(f"""<div class="my-dataset-info"> |
|
<p><b>Dataset Information</b>: {dataset}</p> |
|
</div>""", unsafe_allow_html=True) |
|
st.markdown(f"""<div class="my-dataset-info"> |
|
<p><b>Metric Information</b>: {metrics}</p> |
|
</div>""", unsafe_allow_html=True) |
|
|
|
|
|
def dashboard(): |
|
|
|
with st.container(): |
|
st.title("AudioBench") |
|
|
|
st.markdown(""" |
|
[gh]: https://github.com/AudioLLMs/AudioBench |
|
[][gh] |
|
[][gh] |
|
""") |
|
|
|
audio_url = "https://arxiv.org/abs/2406.16020" |
|
|
|
st.divider() |
|
st.markdown("#### [AudioBench](%s)" % audio_url) |
|
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models") |
|
st.markdown(''' |
|
|
|
|
|
''') |
|
|
|
with st.container(): |
|
left_co, center_co, right_co = st.columns([0.5,1, 0.5]) |
|
with center_co: |
|
st.image("./style/audio_overview.png", |
|
caption="Overview of the datasets in AudioBench.", |
|
use_column_width = True) |
|
|
|
st.markdown(''' |
|
|
|
|
|
''') |
|
|
|
st.markdown("###### :dart: Our Benchmark includes: ") |
|
cols = st.columns(10) |
|
cols[1].metric(label="Tasks", value="8") |
|
cols[2].metric(label="Datasets", value="26") |
|
cols[3].metric(label="Test Models", value="5") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.divider() |
|
with st.container(): |
|
st.markdown("##### Citations") |
|
|
|
st.markdown(''' |
|
:round_pushpin: AudioBench Paper \n |
|
@article{wang2024audiobench, |
|
title={AudioBench: A Universal Benchmark for Audio Large Language Models}, |
|
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F}, |
|
journal={arXiv preprint arXiv:2406.16020}, |
|
year={2024} |
|
} |
|
''') |
|
|
|
def asr(): |
|
st.title("Automatic Speech Recognition") |
|
|
|
filters_levelone = ['LibriSpeech-Test-Clean', |
|
'LibriSpeech-Test-Other', |
|
'Common-Voice-15-En-Test', |
|
'Peoples-Speech-Test', |
|
'GigaSpeech-Test', |
|
'Earnings21-Test', |
|
'Earnings22-Test', |
|
'Tedlium3-Test', |
|
'Tedlium3-Long-form-Test', |
|
'IMDA-Part1-ASR-Test', |
|
'IMDA-Part2-ASR-Test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if filter_1: |
|
dataset_contents(asr_datsets[filter_1], metrics['wer']) |
|
draw('su', 'ASR', filter_1, 'wer', cus_sort=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sqa(): |
|
st.title("Speech Question Answering") |
|
|
|
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test'] |
|
|
|
rest = ['SLUE-P2-SQA5-Test', |
|
'Public-SG-Speech-QA-Test', |
|
'Spoken-Squad-Test'] |
|
|
|
filters_levelone = binary + rest |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
if filter_1: |
|
if filter_1 in binary: |
|
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary']) |
|
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary') |
|
|
|
else: |
|
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge']) |
|
draw('su', 'SQA', filter_1, 'llama3_70b_judge') |
|
|
|
|
|
|
|
def si(): |
|
st.title("Speech Question Answering") |
|
|
|
filters_levelone = ['OpenHermes-Audio-Test', |
|
'ALPACA-Audio-Test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
if filter_1: |
|
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge']) |
|
draw('su', 'SI', filter_1, 'llama3_70b_judge') |
|
|
|
|
|
|
|
def ac(): |
|
st.title("Audio Captioning") |
|
|
|
filters_levelone = ['WavCaps-Test', |
|
'AudioCaps-Test'] |
|
filters_leveltwo = ['Llama3-70b-judge', 'Meteor'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
with middle: |
|
metric = st.selectbox('Select Metric', filters_leveltwo) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if filter_1 or metric: |
|
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')]) |
|
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_')) |
|
|
|
|
|
|
|
def asqa(): |
|
st.title("Audio Scene Question Answering") |
|
|
|
filters_levelone = ['Clotho-AQA-Test', |
|
'WavCaps-QA-Test', |
|
'AudioCaps-QA-Test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
if filter_1: |
|
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge']) |
|
draw('asu', 'AQA',filter_1, 'llama3_70b_judge') |
|
|
|
|
|
|
|
def er(): |
|
st.title("Emotion Recognition") |
|
|
|
filters_levelone = ['IEMOCAP-Emotion-Test', |
|
'MELD-Sentiment-Test', |
|
'MELD-Emotion-Test'] |
|
|
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if filter_1: |
|
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary']) |
|
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary') |
|
|
|
|
|
|
|
def ar(): |
|
st.title("Accent Recognition") |
|
|
|
filters_levelone = ['VoxCeleb-Accent-Test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
|
|
if filter_1: |
|
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge']) |
|
draw('vu', 'AR', filter_1, 'llama3_70b_judge') |
|
|
|
|
|
def gr(): |
|
st.title("Gender Recognition") |
|
|
|
filters_levelone = ['VoxCeleb-Gender-Test', |
|
'IEMOCAP-Gender-Test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
if filter_1: |
|
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary']) |
|
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary') |
|
|
|
|
|
|
|
def spt(): |
|
st.title("Speech Translation") |
|
|
|
filters_levelone = ['Covost2-EN-ID-test', |
|
'Covost2-EN-ZH-test', |
|
'Covost2-EN-TA-test', |
|
'Covost2-ID-EN-test', |
|
'Covost2-ZH-EN-test', |
|
'Covost2-TA-EN-test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
if filter_1: |
|
dataset_contents(spt_datasets[filter_1], metrics['bleu']) |
|
draw('su', 'ST', filter_1, 'bleu') |
|
|
|
|
|
|
|
def cnasr(): |
|
st.title("Chinese Automatic Speech Recognition") |
|
|
|
filters_levelone = ['Aishell-ASR-ZH-Test'] |
|
|
|
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) |
|
|
|
with left: |
|
filter_1 = st.selectbox('Select Dataset', filters_levelone) |
|
|
|
if filter_1: |
|
dataset_contents(cnasr_datasets[filter_1], metrics['wer']) |
|
draw('su', 'CNASR', filter_1, 'wer') |
|
|
|
|
|
|