File size: 9,252 Bytes
2cb716b
 
 
acbea0e
2cb716b
 
6e812c0
 
2cb716b
 
 
 
 
6e812c0
acbea0e
6e812c0
 
 
 
af1f413
ab62ff3
2cb716b
6e812c0
0136a5b
ab62ff3
2cb716b
 
 
 
 
ab62ff3
0136a5b
 
ab62ff3
 
2cb716b
 
 
 
 
ab62ff3
2cb716b
 
 
 
ab62ff3
 
 
0136a5b
2cb716b
 
 
 
 
ab62ff3
2cb716b
 
 
 
 
ab62ff3
0136a5b
2cb716b
ab62ff3
 
0136a5b
2cb716b
 
 
 
 
6e812c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acbea0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e812c0
 
 
 
 
 
 
 
2cb716b
 
 
0136a5b
 
 
 
6e812c0
 
 
 
 
 
2cb716b
0136a5b
6e812c0
 
 
0136a5b
6e812c0
 
 
 
 
 
 
acbea0e
 
 
 
2cb716b
 
6e812c0
 
 
2cb716b
0136a5b
 
2cb716b
 
 
 
0136a5b
2cb716b
 
 
0136a5b
2cb716b
 
44387c3
2cb716b
 
0136a5b
2cb716b
44387c3
0136a5b
2cb716b
 
 
0136a5b
ab62ff3
6e812c0
ab62ff3
6e812c0
40a124e
6e812c0
 
40a124e
 
 
 
 
 
 
 
 
6e812c0
40a124e
6e812c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab62ff3
6e812c0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from openai import OpenAI
import anthropic
from together import Together
import cohere
import json
import re
import os
import requests

# Initialize clients
anthropic_client = anthropic.Anthropic()
openai_client = OpenAI()
together_client = Together()
hf_api_key = os.getenv("HF_API_KEY")
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
huggingface_client = OpenAI(
    base_url="https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud/v1/",
    api_key=hf_api_key
)

JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should strictly adhere to JSON as follows: {"feedback": "<write feedback>", "result": <numerical score>}. Ensure the output is valid JSON, without additional formatting or explanations."""

ALTERNATIVE_JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction."""

def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
    """Get response from OpenAI API"""
    try:
        response = openai_client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": prompt},
            ],
            max_completion_tokens=max_tokens,
            temperature=temperature,
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error with OpenAI model {model_name}: {str(e)}"

def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
    """Get response from Anthropic API"""
    try:
        response = anthropic_client.messages.create(
            model=model_name,
            max_tokens=max_tokens,
            temperature=temperature,
            system=system_prompt,
            messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
        )
        return response.content[0].text
    except Exception as e:
        return f"Error with Anthropic model {model_name}: {str(e)}"

def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
    """Get response from Together API"""
    try:
        response = together_client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": prompt},
            ],
            max_tokens=max_tokens,
            temperature=temperature,
            stream=False,
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error with Together model {model_name}: {str(e)}"

def get_hf_response(model_name, prompt, max_tokens=500):
    """Get response from Hugging Face model"""
    try:
        headers = {
            "Accept": "application/json",
            "Authorization": f"Bearer {hf_api_key}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": max_tokens,
                "return_full_text": False
            }
        }
        
        response = requests.post(
            "https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud",
            headers=headers,
            json=payload
        )
        return response.json()[0]["generated_text"]
    except Exception as e:
        return f"Error with Hugging Face model {model_name}: {str(e)}"

def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
    """Get response from Cohere API"""
    try:
        response = cohere_client.chat(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": prompt}
            ],
            max_tokens=max_tokens,
            temperature=temperature
        )
        # Extract the text from the content items
        content_items = response.message.content
        if isinstance(content_items, list):
            # Get the text from the first content item
            return content_items[0].text
        return str(content_items)  # Fallback if it's not a list
    except Exception as e:
        return f"Error with Cohere model {model_name}: {str(e)}"

def get_model_response(
    model_name,
    model_info,
    prompt,
    use_alternative_prompt=False,
    max_tokens=500,
    temperature=0
):
    """Get response from appropriate API based on model organization"""
    if not model_info:
        return "Model not found or unsupported."

    api_model = model_info["api_model"]
    organization = model_info["organization"]

    # Select the appropriate system prompt
    if use_alternative_prompt:
        system_prompt = ALTERNATIVE_JUDGE_SYSTEM_PROMPT
    else:
        system_prompt = JUDGE_SYSTEM_PROMPT

    try:
        if organization == "OpenAI":
            return get_openai_response(
                api_model, prompt, system_prompt, max_tokens, temperature
            )
        elif organization == "Anthropic":
            return get_anthropic_response(
                api_model, prompt, system_prompt, max_tokens, temperature
            )
        elif organization == "Prometheus":
            return get_hf_response(
                api_model, prompt, max_tokens
            )
        elif organization == "Cohere":
            return get_cohere_response(
                api_model, prompt, system_prompt, max_tokens, temperature
            )
        else:
            # All other organizations use Together API
            return get_together_response(
                api_model, prompt, system_prompt, max_tokens, temperature
            )
    except Exception as e:
        return f"Error with {organization} model {model_name}: {str(e)}"

def parse_model_response(response):
    try:
        # Debug print
        print(f"Raw model response: {response}")

        # First try to parse the entire response as JSON
        try:
            data = json.loads(response)
            return str(data.get("result", "N/A")), data.get("feedback", "N/A")
        except json.JSONDecodeError:
            # If that fails (typically for smaller models), try to find JSON within the response
            json_match = re.search(r"{.*}", response, re.DOTALL)
            if json_match:
                data = json.loads(json_match.group(0))
                return str(data.get("result", "N/A")), data.get("feedback", "N/A")
            else:
                return "Error", f"Invalid response format returned - here is the raw model response: {response}"

    except Exception as e:
        # Debug print for error case
        print(f"Failed to parse response: {str(e)}")
        return "Error", f"Failed to parse response: {response}"
    
def alternative_parse_model_response(output):
    try:
        print(f"Raw model response: {output}")
        output = output.strip()

        # Remove "Feedback:" prefix if present (case insensitive)
        output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE)
        
        # New pattern to match [RESULT] X at the beginning
        begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$'
        begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE)
        if begin_match:
            score = int(begin_match.group(1))
            feedback = begin_match.group(2).strip()
            return str(score), feedback

        # Existing patterns for end-of-string results...
        pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?"
        match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
        if match:
            feedback = match.group(1).strip()
            score = int(match.group(2))
            return str(score), feedback

        # If no match, try to match "... Score: X"
        pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?"
        match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
        if match:
            feedback = match.group(1).strip()
            score = int(match.group(2))
            return str(score), feedback

        # Pattern to handle [Score X] at the end
        pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$"
        match = re.search(pattern, output, re.DOTALL)
        if match:
            feedback = match.group(1).strip()
            score = int(match.group(2))
            return str(score), feedback

        # Final fallback attempt
        pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$"
        match = re.search(pattern, output)
        if match:
            score = int(match.group(1))
            feedback = output[:match.start()].rstrip()
            # Remove any trailing brackets from feedback
            feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip()
            return str(score), feedback

        return "Error", f"Failed to parse response: {output}"

    except Exception as e:
        print(f"Failed to parse response: {str(e)}")
        return "Error", f"Exception during parsing: {str(e)}"